• 제목/요약/키워드: Fluid pressure

검색결과 4,338건 처리시간 0.031초

회전 운동이 이젝터 성능에 미치는 영향에 관한 연구 (Study on the Swirling Motion Effect of Ejector Performance)

  • 강상훈;박영철
    • 한국산학기술학회논문지
    • /
    • 제18권4호
    • /
    • pp.544-549
    • /
    • 2017
  • 본 논문은 오존 방식 선박평형수 처리의 핵심 장치인 이젝터에 대하여 회전 운동하는 구동 유체가 기체-액체 이젝터의 효율에 미치는 영향에 관한 연구이다. 이젝터는 오존을 구동 노즐을 통해 분사되는 고압 액체(선박평형수)와 주변부의 저압 기체 간의 운동량 교환으로 발생되는 부압에 의해 기체(오존)를 흡입시키는 장치이다. 기존의 이젝터는 단순한 형태로 구동 유체가 분사되지만, 본 논문에서는 구동 노즐부에 회전 유도장치를 적용하여 구동 유체가 회전 운동하며 분사될 수 있도록 한다. 구동 유체의 회전 운동 유무에 따른 유동 특성을 파악하기 위하여 전산유체해석을 이용하였으며, 구동 유체의 압력과 유량, 흡입부에 발생하는 흡입 유체의 부압과 흡입 유량, 그리고 토출 압력이 예측되었다. 그 결과를 바탕으로 회전유도 장치가 적용된 이젝터의 효율은 22.25%로 산출되었으며, 구동 유체의 회전 운동이 없는 이젝터에 비해 약 1.7%의 효율이 향상되었다. 마지막으로 전산유체해석의 타당성을 검증하고자 실험 장치를 구축하여 회전 유도 장치가 적용된 이젝터에 대한 실험을 수행하였으며, 전산유체해석 결과와 비슷한 결과를 얻을 수 있었다.

Investigation of a fiber reinforced polymer composite tube by two way coupling fluid-structure interaction

  • Daricik, Fatih;Canbolat, Gokhan;Koru, Murat
    • Coupled systems mechanics
    • /
    • 제11권4호
    • /
    • pp.315-333
    • /
    • 2022
  • Fluid-Structure Interaction (FSI) modeling is highly effective to reveal deformations, fatigue failures, and stresses on a solid domain caused by the fluid flow. Mechanical properties of the solid structures and the thermophysical properties of fluids can change under different operating conditions. In this study, we investigated the interaction of [45/-45]2 wounded composite tubes with the fluid flows suddenly pressurized to 5 Bar, 10 Bar, and 15 Bar at the ambient temperatures of 24℃, 66℃, and 82℃, respectively. Numerical analyzes were performed under each temperature and pressure condition and the results were compared depending on the time in a period and along the length of the tube. The main purpose of this study is to present the effects of the variations in fluid characteristics by temperature and pressure on the structural response. The variation of the thermophysical properties of the fluid directly affects the deformation and stress in the material due to the Wall Shear Stress (WSS) generated by the fluid flow. The increase or decrease in WSS directly affected the deformations. Results show that the increase in deformation is more than 50% between 5 Bar and 10 Bar for the same operating condition and it is more than 100% between 5 Bar and 15 Bar by the increase in pressure, as expected in terms of the solid mechanics. In the case of the increase in the temperature of fluid and ambient, the WSS and Von Mises stress decrease while the slight increases of deformations take place on the tube. On the other hand, two-way FSI modeling is needed to observe the effects of hydraulic shock and developing flow on the structural response of composite tubes.

직사각형 단면을 갖는 유체 저장 구조물의 거동에 관한 연구 (A Study on Behavior of Rectangular Liquid Storage Structures)

  • 박장호
    • 한국안전학회지
    • /
    • 제18권1호
    • /
    • pp.101-107
    • /
    • 2003
  • Dynamic behavior of flexible rectangular liquid storage structures is analysed by the developed method. The rectangular liquid storage structures are assumed to be fixed to the ground and a moving coordinate system is used. The irrotational motion of invicid and incompressible ideal fluid is represented by two analytic solutions. One is the solution of the fluid motion in the rigid rectangular liquid storage structure due to ground motions and the other is the solution of the fluid motion by the motion of the wall in the flexible rectangular liquid storage structure. The motion of structure is modeled by finite elements. The fluid-structure interaction effect is reflected into the coupled equation of motion as added fluid mass matrix. The free surface sloshing motion and hydrodynamic pressure acting on the wall in the flexible rectangular liquid storage structure due to the horizontal ground motion are obtained by the developed method and verified.

축대칭 원통 탄성 셸의 진동음향 : 평면 모드의 벽 임피던스 (Vibroacoustics of Axisymmetric Cylindrical Elastic Shells : Wall Impedance of the Plane Mode)

  • 박찬일
    • 한국소음진동공학회논문집
    • /
    • 제18권9호
    • /
    • pp.930-936
    • /
    • 2008
  • Fluid loading of a vibrating cylindrical shell has influence on natural frequencies and vibration magnitudes of the shell and the acoustic pressure of fluid. The vibroacoustics of fluid-filled cylindrical shells need the coupled solution of Helmholtz equation and governing equation of a cylindrical shell with boundary conditions. This paper proposed the wall impedance of fluid-filled axisymmetric cylindrical shells, focusing on the inner fluid/shell interaction. To propose the impedance, shell displacements used the linear combination of in vacuo shell modes. Acoustic pressure prediction of fluid used Kirchhoff-Helmholtz integral equation with Green's function of the plane mode. For the demonstration of the proposed results, numerical applications on mufflers were conducted.

축대칭 원통 탄성 쉘의 진동음향 (Vibroacoustics of Axisymmetric Cylindrical Elastic Shells)

  • 박찬일
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2008년도 춘계학술대회논문집
    • /
    • pp.160-165
    • /
    • 2008
  • Fluid loading of a vibrating cylindrical shell can change natural frequencies and vibration magnitudes of the shell and a vibrating cylindrical shell can also change acoustic pressure of fluid. The vibroacoustics of fluid-filled cylindrical shells need the coupled solution of Helmholtz equation and governing equation of a cylindrical shell with boundary conditions. This paper proposed the wall impedance of fluid-filled axisymmetric cylindrical shells, focusing on the inner fluid/shell interaction. To propose the impedance, shell displacements used the linear combination of in vacuo shell modes. Acoustic pressure prediction of fluid used Kirchchoff-Helmholtz Integral equation with Green function of the plane mode. For the demonstration of the proposed results, numerical applications on mufflers were conducted.

  • PDF

전자기력에 의한 자성유체의 구동에 관한 연구 (A Study on the Magnetic Fluid driven by Electromagnetic Force)

  • 남성원
    • 한국전산유체공학회지
    • /
    • 제4권2호
    • /
    • pp.31-38
    • /
    • 1999
  • Numerical analysis is conducted on the deformation of free surface of magnetic fluid. Steady magnetic fields are induced by a circular current loop. Governing equations of magnetic fields are solved by using the concept of vector potential. The free surface of magnetic fluid is formed by the balance of surface force, gravity, pressure difference, magnetic normal pressure and magnetic body force. The deformations of free surface of magnetic fluid are qualitatively clarified. And, the patterns of steady non-uniform magnetic fields induced by a circular current loop are quantitatively presented. The shape of free surface attained by the polar fluid approach is rougher and higher than that attained by the quasi-steady approach.

  • PDF

EXTENSION OF AUSMPW+ SCHEME FOR TWO-FLUID MODEL

  • Park, Jin Seok;Kim, Chongam
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • 제17권3호
    • /
    • pp.209-219
    • /
    • 2013
  • The present paper deals with the extension of AUSMPW+ scheme into two-fluid model for multiphase flow. AUSMPW+ scheme is the improvement of a single-phase AUSM+ scheme by designing pressure-based weighting functions to prevent oscillations near a wall and shock instability after a strong shock. Recently, Kitamura and Liou assessed a family of AUSM-type schemes with two-fluid model governing equations [K. Kitamura and M.-S. Liou, Comparative study of AUSM-Family schemes in compressible multi-phase flow simulations, ICCFD7-3702 (2012)]. It was observed that the direct application of the single-phase AUSMPW+ did not provide satisfactory results for most of numerical test cases, which motivates the current study. It turns out that, by designing pressure-based weighting functions, which play a key role in controlling numerical diffusion for two-fluid model, problems reported in can be overcome. Various numerical experiments validate the proposed modification of AUSMPW+ scheme is accurate and robust to solve multiphase flow within the framework of two-fluid model.

이젝터가 부착된 냉동시스템의 성능실험

  • 이원희;김윤조;김민수
    • 설비공학논문집
    • /
    • 제13권10호
    • /
    • pp.993-1001
    • /
    • 2001
  • Experimental investigation on the performance of dual-evaporator refrigeration system with an ejector has been carried out. In this study, a hydrofluorocarbon (HFC) refrigerant R134a is chosen as a working fluid. The condenser and two-evaporators are made as concentric double pipes with counter-flow type heat exchangers. Experiments were performed by changing the inlet and outlet temperatures of secondary fluids entering condenser, high-pressure evaporator and low-pressure evaporator at test conditions keeping a constant compressor speed. When the external conditions (inlet temperatures of secondary fluid entering condenser and one evaporator) are fixed, results show that coefficient of performance (COP) increases as the inlet temperature of the other evaporator rises. It is also shown that the COP decreases as the mass flaw rate ratio of suction fluid to motive fluid increases. The COP of dual-evaporator refrigeration system with an ejector is superior to that of a single-evaporator vapor compression system by 3 to 6%.

  • PDF

Experimental Study on the Performance of Refrigeration System with an Ejector

  • Lee, Won-Hee;Kim, Yoon-Jo;Kim, Min-Soo
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • 제10권4호
    • /
    • pp.201-210
    • /
    • 2002
  • Experimental investigation on the performance of dual-evaporator refrigeration system with an ejector has been carried out. In this study, a hydrofluorocarbon (HFC) refrigerant R134a is chosen as a working fluid. The condenser and two-evaporators are made as concentric double pipes with counter-flow type heat exchangers. Experiments were peformed by changing the inlet and outlet temperatures of secondary fluids entering condenser, high-pressure evaporator and low-pressure evaporator at test conditions keeping a constant compressor speed. When the external conditions (inlet temperatures of secondary fluid entering condenser and one of the evaporators) are fixed, results show that coefficient of performance (COP) increases as the inlet temperature of the other evaporator rises. It is also shown that the COP decreases as the mass flow rate ratio of suction fluid to motive fluid increases. The COP of dual-evapo-rator refrigeration system with an ejector is superior to that of a single-evaporator vapor compression system by 3 to 6%.

전극길이 변화에 따른 실린더 형태 ER밸브의 성능고찰 (Performance Investigation of Cylindrical-Type ER Valves With Different Electrode Length)

  • 전영식
    • 한국생산제조학회지
    • /
    • 제7권6호
    • /
    • pp.1-11
    • /
    • 1998
  • This paper presents performance analyses of three types of the cylindrical-type ER(electro-rheo-logical) valves, which have different electrode length and width but same electrode area. Following the composition of silicone oil-based ER fluid, the field-dependent yield stresses are obtained from experimental investigation on the Bingham property of the ER fluid. The ER valve which is dependent on the applied electric field is devised and its theoretical model is derived. On the basis of the pressure-drop analysis, three types of the ER valves are designed and manufactured. After experimentally evaluation field-dependent pressure drops, PI controller is formulated to achieve tracking control on desired pressure drop. The controller is then experimentally implemented and tracking control performance is presented in order to demonstrate superior controllability of the ER valve. In addition, the response characteristic of the ER valve with respect to the excitation frequency of the electric fiedls is provided to show the feasibility of practical application.

  • PDF