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ABSTRACT. The present paper deals with the extension of AUSMPW+ scheme into two-fluid

model for multiphase flow. AUSMPW+ scheme is the improvement of a single-phase AUSM+

scheme by designing pressure-based weighting functions to prevent oscillations near a wall

and shock instability after a strong shock. Recently, Kitamura and Liou assessed a family

of AUSM-type schemes with two-fluid model governing equations [K. Kitamura and M.-S.

Liou, Comparative study of AUSM-Family schemes in compressible multi-phase flow simu-

lations, ICCFD7-3702 (2012)]. It was observed that the direct application of the single-phase

AUSMPW+ did not provide satisfactory results for most of numerical test cases, which mo-

tivates the current study. It turns out that, by designing pressure-based weighting functions,

which play a key role in controlling numerical diffusion for two-fluid model, problems re-

ported in can be overcome. Various numerical experiments validate the proposed modification

of AUSMPW+ scheme is accurate and robust to solve multiphase flow within the framework of

two-fluid model.

1. INTRODUCTION

Recently, analyzing multi-phase flow becomes popular due to various applications, such

as cavitating flow in hydraulic machine, high-speed underwater projectiles and liquid-gas in-

teractions. There have been many numerical studies, such as interface tracking methods and

interface capturing methods. In order to handle complex geometry and phase transition, two in-

terface capturing methods are available: homogeneous equilibrium model (HEM) and two-fluid

model. While HEM is more efficient and provides reasonable solution for many applications,

two-fluid model is more favorable in describing inter-phasic flow physics.

There are, however, many numerical difficulties to compute two-fluid model. Most notably,

while governing equation for each phase is hyperbolic, combining them into two-fluid model

becomes non-hyperbolic. In addition, wave speed for each phase is radically different, yielding

a very stiff mathematical from. Finally, the non-conservative term may give erroneous results
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when the conservative scheme, which is typically used in single phase fluid, is applied. Thus,

proper numerical algorithm for two-fluid model is necessary.

Various approaches are developed to overcome the above-mentioned difficulties. Recently,

Liou et al. proposed a new approach based on stratified flow model [1, 2] and AUSM+-up

scheme [3]. By successfully extending single-phase AUSM-type flux scheme into two-fluid

model, this method does not requires the exact Riemann solver.

Many AUSM-type flux schemes can be easily adopted and recently their performance were

compared. Although AUSMPW+ scheme is one of the most shock-stable and accurate flux in

compressible flows [4, 5], direct application to two-fluid model fails to compute most of test

cases [6]. This is mainly attributed that the pressure-based weighting functions, the key part

of AUSMPW+ scheme, is improperly working. These functions, based on the compressible

flow physics, are originally devised to eliminate the overshoots behind strong shock and/or os-

cillations near a wall, which is a typical symptom appearing in most AUSM-type schemes. It

is also studied that the modifications of the pressure-based weighting functions functions are

necessary to extend AUSMPW+ scheme to HEM-based multiphase flows [7] and magnetohy-

drodynamics (MHD) [8].

The present paper deals with the extension of AUSMPW+ scheme for two-fluid model. At

first, two-fluid model and its numerical treatment are briefly introduced as a baseline approach.

Examining the shock-stability mechanism of AUSMPW+ scheme, the proper extension for

two-fluid model is proposed. Extensive numerical experiments are conducted and conclusions

are given.

2. BASELINE APPROACH: TWO-FLUID MODEL

2.1. Governing Equations. In the two-fluid model, the governing equations for each phase

are directly solved.
∂Qk

∂t
+∇ · Fk = Pint

k + Sk, k = g, l (2.1)

Qk =

⎛⎝ αρ
αρV
αρE

⎞⎠
k

, Fk =

⎛⎝ αρV
αρV ·V + αp

αρVH

⎞⎠
k

, Pint
k = pint

⎛⎝ 0
∇α
∂α
∂t

⎞⎠
k

,

where g and l indicate the gas and liquid phase, respectively. Qk, Fk and Sk are the conserva-

tive vector, inviscid flux vector and volumetric source vector (due to body foces, heat addition,

phase change, etc.), respectively. αk is the volume fraction with αl + αg = 1. To describe the

interaction between gas and liquid phase, the inter-facial pressure vector Pint
k is introduced.

It is assumed that the bulk pressure and inter-facial pressure of each phase are the same.

pl = pg = p, (2.2)

pintl = pintg = pint. (2.3)

In addition, the inter-facial pressure is expressed with the bulk pressure and finite jump term

[9].

pint = p−Δp∗. (2.4)
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For liquid and gas system, it can be usually formulated as follows.

Δp∗ = σ
αgαlρgρl

αgρl + αlρg
|Vl −Vg|2. (2.5)

Assuming that each phase is dispersed and continuous, it can be simplified as follows.

Δp∗ = C∗
pαlαg|Vl −Vg|2. (2.6)

While each phase are governed by hyperbolic conservation laws, the two-fluid model (Eq.

(2.1)) may lose hyperbolicity. In order to keep the system hyperbolic, coefficient of the inter-

facial pressure (σ,C∗
p ) becomes large [2]. In the present computations, the inter-facial pressure

term is modeled by Eq. (2.6) with C∗ = 2.0.

To close the system, the equation of state (EOS) for each phase is required. The ideal gas

EOS and stiffened EOS [11] are adopted for gas and liquid phase, respectively.

pk = ρk
γk − 1

γk
CpkTk − pk∞, ek =

Cpk

γk
Tk +

pk∞
ρk

, (2.7)

where γg = 1.4, Cpg = 1004.5J/(kgK), pg∞ = 0Pa and γl = 2.8, Cpl = 4186J/(kgK),
pl∞ = 8.5× 108Pa.

2.2. Stratified Flow Model and Spatial Discretization. In order to discretize the governing

equation (Eq. (2.1)), we adopt the stratified flow model [10, 1]. This model divides each phase

region according to characteristic property, such as volume fraction. This concept is suitable

to the finite volume discretization, and we can construct two control volumes for liquid and

gas within a cell. It is assumed that the volume fraction αk is piecewise continuous within

the cell and allowed a jump at a cell interface. For each phase, the conservation laws are

applied as in the single phase fluids, and the interactions at the sub-cell interface between

gas and liquid phases are additionally considered. The present computations ignore phase

transition and viscous effects, and thus only inter-facial pressure affects the momentum and

energy conservation as follows.

Δx

Δt
δt

⎛⎝ αkρk
αkρkuk
αkρkEk

⎞⎠
j

+ δxj

⎛⎝ αkρkuk
αkρku

2
k + αkp

αkρkukHk

⎞⎠− pintj

⎛⎝ 0
δxj (αk,j)

Δx
Δt δ

t(αk,j)

⎞⎠ = 0. (2.8)

where δt(·) = (·)n+1 − (·)n and δxj (·) = (·)j+1/2 − (·)j−1/2.

The inter-facial pressure affects the momentum conservation if the properties (including

αk) are discretized by at least a second-order accurate method. Here, a second-order accurate

MUSCL interpolation is used. At the cell interface, monotone and accurate numerical flux

scheme is required, which is going to be discussed in the next section.

2.3. Time Marching and Solution Update. In order to update solution variables, third-order

accurate TVD Runge-Kutta method is used. The time-derivative term appearing in the inter-

facial pressure vector is included in time marching, and thus the energy equation is computed
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as follows.

Q̂3,k = Q3,k + αkp
int, (2.9)

∂Q̂3,k

∂t
+

∑
face

(F3,k · n)l = 0, (2.10)

where n and l are the normal vector and length of the face, respectively. After time marching,

the decoding process is required to update pn+1 and αn+1
k .

(p+ âk)αk − Âk = 0, (2.11)

âk = γkpk,∞ + (γk − 1)pint, (2.12)

Âk = (γk − 1)

(
Q̂3,k −

Q2
2,k

2Q1,k

)
. (2.13)

Equation (2.11) are then solved by the Newton iteration method [6].

3. AUSMPW+ SCHEME FOR TWO-FLUID MODEL

3.1. Baseline Scheme: AUSMPW+. The AUSMPW+ scheme for a single gas phase with

k = g can be formulated as follows.

Fk,1/2,L/R = M̄+
k,Lck,1/2Φk,L + M̄−

k,Rck,1/2Φk,R + αk,1/2,L/R(P
+
k,LPL + P+

k,RPR), (3.1)

where Φ = (αρ, αρV, αρH)T and P = (0, pn, 0)T .

For m1/2 = m1/2 =M+
k,L +M−

k,R ≥ 0,

M̄+
k,L =M+

k,L +M−
k,R · [(1− wk) · (1 + fk,R)− Fk,L],

M̄−
k,R =M−

k,R · wk · (1 + fk,R).
(3.2)

For m1/2 ≤ 0,

M̄+
k,L =M+

k,L · wk · (1 + fk,L),

M̄−
k,R =M+

k,R +M+
k,L · [(1− wk) · (1 + fk,L)− Fk,R].

(3.3)

We use the AUSM-type interpolating functions for the Mach number(M ) and pressure(P )

[4], as follows.

M±
k =

(
±1

4(Mk ± 1)2, |Mk| ≤ 1,
1
2(Mk ± |Mk|), |Mk| > 1.

(3.4)

P±|k,L/R =

(
±1

4(Mk ± 1)2(2∓Mk)± αMk(M
2
k − 1)2, |Mk| ≤ 1,

1
2(1± sign(Mk)), |Mk| > 1.

(3.5)

The speed of sound at a cell-interface is given by

ck,1/2 =
c2k,s

max(|Uk,L/R|, ck,s)
, ck,s =

√
2(γ − 1)

(γ + 1)
Hk,n, (3.6)

Hk,n = 0.5×
(
Hk,L − 0.5V 2

L +Hk,R − 0.5V 2
R

)
, (3.7)
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where U is the contravariant velocity and V is the tangential velocity.

In order to treat oscillations near a wall and across a strong shock, two pressure-based func-

tions, f and w, are introduced as follows.

fk,L/R =

{ (
pL,R

pk,s
− 1

)
w2, pk,s �= 0

0, elsewhere
, w2 = min

(
1,
min(p1,L, p1,R, p2,L, p2,R)

min(pL, pR)

)2

,

(3.8)

w(pL, pR) = 1−min

(
pL
pR

,
pR
pL

)3

, (3.9)

where pk,s = P+
k,LpL + P−

k,RpR.

3.2. Analysis and Modification of Pressure-based Weighting Functions. Equations (3.8)

and (3.9) basically control the amount of numerical diffusion caused by the pressure difference

and difference of advection term. Kitamura and Liou extended a single gas phase AUSMPW+

into two-fluid model without any modification [6], and it was observed that the two functions

are unstable for two-fluid model, leading to divergence of computations in most test cases.

According to authors’ experience on the extension of AUSMPW+ for HEM multiphase flow

and MHD, it is essential to modify these terms based on its diffusion mechanism and its design

principle. We start it by examining each numerical diffusion term.

For 0 ≤ m1/2 ≤ 1, the diffusion term of AUSMPW+ scheme can be written as follows.

DAUSMPW+ = Uk,RΔΦk +
Uk,L + Uk,R

2ck,1/2
Φk,LΔUk −

(
P+
k,LpL + P−

k,RpR

)
+
ck,1/2

2
(Mk,R − 1)2w(1 + fk,R)ΔΦk +

ck,1/2

2
(Mk,R − 1)2Φk,LΔfk.

(3.10)

Comparing Eq. (3.10) to the diffusion term of AUSM+-up [3] scheme, we can observe

following characteristics.

DAUSM+−up = Uk,RΔΦk+
Uk,L + Uk,R

2ck,1/2
Φk,LΔUk−Mpkck,1/2Φk,L−(P+

k,LpL+P
−
k,RpR−puk).

(3.11)

Mpk = −
Kp

fa
max(1− M̄2

k , 0)
Δp

ρ̄kc
2
k,1/2

, puk = −KuP
+
k,L|P−

k,R|ρ̄kfack,1/2ΔUk, (3.12)

where Kp and Ku are coefficients. fa is a scaling function for all-speed extension but it is

needless for two-fluid model (i.e. fa = 1).

i) Both scheme (AUSMPW+ and AUSM+-up) have the numerical diffusion due to pressure

difference, and they are similar to each other as follows.

D
(p)
AUSMPW+ =

ck,1/2

2
(Mk,R − 1)2Φk,LΔfk =

ck,1/2

2
(Mk,R − 1)2w2Φk,L

Δp

pk,s
,(3.13)

D
(p)
AUSM+−up = −Mpkck,1/2Φk,L =

Kp

fa
ck,1/2(1− M̄2

k )Φk,L
Δp

ρ̄kc
2
k,1/2

. (3.14)
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ii) While AUSMPW+ scheme has additional diffusion mechanism due to jump in advection

variable (ΔΦk), AUSM+-up scheme adjusts the pressure flux by the difference in interface

normal velocity.

The role of f of AUSMPW+ is a kind of bridge between AUSM+ and AUSMD. While it

consists of pressure ratio, it actually reflects the density difference via the definition of speed

of sound (see Eqs (14-17) in Ref [4]).

(ρu)k,1/2,AUSMPW+ = M+
k,Lck,1/2ρk,L +M−

k,Rck,1/2ρk,L

(
ρk,R
ρk,L

)
(3.15)

≈ M+
k.Lck,1/2ρk,L +M−

k.Rck,1/2ρk,L

(
pR
pL

)
. (3.16)

To be consistent with the stiffened EOS [10], the pressure ratio of f (Eq. (3.8)) has to be

written in terms of p̄ = p+ p∞.

fk,L/R =

{ (
p̄L/R

p̄s
− 1

)
w2 ps �= 0

0 else
(3.17)

Furthermore, the term w2 in Eq. (3.8), which is designed to detect stagnation region of

boundary layer or shock in multi-dimensional situation, also controls the magnitude of numer-

ical diffusion by pressure jump (see Eq. (3.13)). The problem is that, while w2 successfully

controls the diffusion by pressure jump for gas phase, it does not provide adequate diffusion

for liquid phase or transition of phase. From this perspective, w2 is also computed using p̄ .

w2 = min

(
1,
min(p̄1,L, p̄1,R, p̄2,L, p̄2,R)

min(p̄L, p̄R)

)2

(3.18)

On the other hand, the role of w is to detect a large pressure jump (especially around shock)

and introduces additional diffusion to remove spurious oscillation (see the fourth term in Eq.

(3.10)). If this term is also replaced by p̄, w cannot detect pressure jump in liquid phase and

cannot suppress oscillations by pressure jump. Thus, w should be kept as the original form Eq.

(3.9), and thus it is the same in both gas and liquid phase.

While AUSMPW+ for HEM model additionally introduces a term based on mixture density

in phase transition (Eq. (46) in Ref. [7]) to control the fourth term in Eq. (3.10), AUSMPW+

for two-fluid model does not require such device. AUSM+-up and other AUSM-type scheme

(for example, SLAU [12]) control the pressure flux by velocity difference (Eq.(3.12)). Though

not essential, puk could be a little bit helpful in suppressing a slight kink after shock in liquid

phase. Thus, we add puk in the pressure flux of AUSMPW+.

In summary, by examining the behavior of numerical diffusion, AUSMPW+ for two-fluid

model can be obtained by replacing p of Eq. (3.8) by p̄. The usage of puk of Eq. (3.12) is

optional.
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4. NUMERICAL EXPERIMENTS

We use a two-dimensional structured finite volume solver. To account for the inter-facial

pressure, a second-order MUSCL interpolation with minmod limiter is applied to the primitive

variables Qp = (αg, ug, ul, vg, vl, P, Tg, Tl). With the developed AUSMPW+ scheme, we

compute four test cases. Without the proposed modification, it is reported that AUSMPW+

fails to solve them [6]. All computed results are compared with AUSM+ and AUSM+-up(1,1).

Hereafter, AUSM+-up indicates AUSM+-up(1,1).

4.1. Moving Phase Discontinuity. The first test case is to examine the capability to resolve

phase discontinuity maintaining the pressure. Computational domain is [0, 10] × [0, 1] with

Δx = Δy = 0.05. Initially, air and water is separated at x = 5.

(p, αg, uk, v, k, Tk)L = (105Pa, 1− ε, 100m/s, 0m/s, 300K) for x ≤ 5m,

(p, αg, uk, v, k, Tk)R = (105Pa, ε, 100m/s, 0m/s, 300K) else, (4.1)

where k = l, g and ε = 1.0× 10−7.

Figure 1 shows the distributions of pressure and void fraction along the centerline. All flux

schemes can compute the moving phase transition successfully.

(a) Pressure (b) Volume of Fraction

FIGURE 1. Distribution of pressure and volume of fraction along the center-

line at t = 0.03s.

4.2. Shock Tube Problem. In order to examine robustness across underwater shock waves,

two kinds of shock tube problems are considered. We conduct the propagation of shock wave

from air to water and vice versa. Computational domain is [0, 10]×[0, 1] andΔx = Δy = 0.02.

Two initiail conditions are imposed as follows.
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Air-to-Water Shock Tube

(p, αg, uk, vk, Tk)L = (109pa, 1− ε, 100m/s, 0m/s, 308.15K) for x ≤ 5m,

(p, αg, uk, vk, Tk)R = (105pa, ε, 100m/s, 0m/s, 308.15K) else. (4.2)

Water-to-Air Shock Tube

(p, αg, uk, vk, Tk)L = (107pa, ε, 100m/s, 0m/s, 308.15K) for x ≤ 5m,

(p, αg, uk, vk, Tk)R = (5× 106pa, 1− ε, 100m/s, 0m/s, 308.15K) else, (4.3)

where k = l, g and ε = 1.0× 10−7.

Figures 2 and 3 show the pressure distribution of air-to-water shock tube and water-to-

air shock tube, respectively. The dotted line represents the gas volume fraction. AUSM+

suffers spurious oscillations around shock region in water, especially for water-to-air shock

tube. AUSMPW+ with the proposed modification and AUSM+-up(1,1) can successfully re-

solve these wave structures.

FIGURE 2. Distribution of pressure along the centerline at t = 0.002s. (Right:

Close-up view around shock region)

4.3. One-dimensional Cavitation Problem. This is a simplified cavitation problem, pro-

posed by Saurel and Abgrall [13]. After two opposite rarefaction waves are propagating in

tube, velocity reaches zero at the center of domain. Thus, liquid flow containing 1% gas creates

a cavitation zone at the center. Computational domain is [0, 10]× [0, 1] with Δx = Δy = 0.05.

The initial condition is

(p, αg, uk, vk, Tk)L = (105pa, ε,−100m/s, 0m/s, 300K) for x ≤ 5m,

(p, αg, uk, vk, Tk)R = (105pa, ε, 100m/s, 0m/s, 300K) else, (4.4)

where k = l, g and ε = 1.0× 10−2.
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FIGURE 3. Distribution of pressure along the centerline at t = 0.002s. (Right:

Close-up view around shock region)

Figure 4 shows the pressure and void fraction of AUSM+-up(1,1) and AUSMPW+ scheme.

Both solutions are almost identical.

(a) Pressure (b) Void Fraction

FIGURE 4. Distribution of pressure and void fraction along the centerline at

t = 10μs)

4.4. Shock/Water-Column Interaction. The last test is more challenging and realistic prob-

lem. When shock wave impinges on the water column, shock wave transmits into water and

travels faster. Shock wave in water also reflects at the rear interface. Considering the flow sym-

metry, only the upper half region is simulated. Computational domain is [−15mm, 20mm] ×
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[0mm, 15mm], and discretized by 400×200 cells. The initial condition is provided as follows.

(p, αg, uk, vk, Tk) = (2.35438× 105pa, ε, 225.86m/s, 0m/s, 381.85K) for x ≤ −4mm,

(p, αg, uk, vk, Tk) = (105pa, 1− ε, 0m/s, 0m/s, 293.15K) for x ≥ −4mm,√
(x2 + y2) ≤ 3.2mm,

(p, αg, uk, vk, Tk) = (105pa, ε, 0m/s, 0m/s, 293.15K) else, (4.5)

where k = l, g and ε = 1× 10−5.

Figure 5 shows the pressure contours at t = 10μs. The solid line is the boundary of water

column. AUSMPW+ successfully captures the transmission and diffraction of the impinging

shock wave and the transmitted shock reflected from the rear water column. These results are

quite similar to other AUSM-type results [2, 6].

FIGURE 5. Pressure contours at t = 10μs

5. CONCLUSION

In this paper, we successfully extend AUSMPW+ scheme to two-fluid model. By examining

the behavior of numerical diffusion, AUSMPW+ scheme for two-fluid model can be obtained

by simply changing the pressure-based weighting function f only. All computed results for

critical test cases confirms that AUSMPW+ provides robust and accurate solutions of com-

pressible two-fluid multiphase flow with shock waves.
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