• 제목/요약/키워드: Fluid loading effect

검색결과 74건 처리시간 0.028초

초임계 이산화탄소를 이용한 Gemcitabine 함유 PLLA 미립자 제조: 공정 변수의 영향 (Production of Gemcitabine-Loaded Poly (L-lactic acid) Microparticles Using Supercritical Carbon Dioxide: Effect of Process Parameters)

  • 주현재;정인일;임교빈;유종훈
    • KSBB Journal
    • /
    • 제26권1호
    • /
    • pp.69-77
    • /
    • 2011
  • In this study, poly (L-lactic acid) (PLLA) microparticles containing gemcitabine hydrochloride were prepared by a supercritical fluid process, called aerosol solvent extraction system (ASES), utilizing supercritical carbon dioxide as antisolvent. The influence of process parameters such as temperature, pressure, $CO_2$ and solution flow rate, solution concentration, and feed ratio of drug to polymer on the morphology and characteristics of the microparticles was studied in detail. The gemcitabine-loaded microparticles exhibited a spherical shape with a smooth surface. The entrapment efficiency of gemcitabine increased with increasing temperature, solution concentration and $CO_2$ flow rate and with decreasing drug/polymer feed ratio. The maximum drug loading obtained from the ASES process was found to be about 11%. The ASES-processed PLLA microparticles containing gemcitabine showed a relatively high initial burst due to the presence of surface pores on the microparticles and the poor affinity between drug and polymer.

EGR Cooler에 CNC 첨가시 열교환 특성에 관한 연구 (A Study on the Heat Exchange Characteristics of EGR-Cooler with CNC)

  • 이병호;이중섭;김보한;정효민;정한식
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제32권6호
    • /
    • pp.847-853
    • /
    • 2008
  • Although combustion is essential in most energy generation processes, it is one of the major causes of air pollution. Circle fin exhaust pipes were designed to study the effect of cooling the recirculated exhaust gases (EGR) of Diesel engines on the chemical composition of the exhaust gases and the reduction in the percentages of pollutant emissions. The designs adopted in this study were exhaust pipes with solid and hollow fins around them direct surface force measurement in water using a nano size colloidal probe Technique The direct force measurement between colloidal surfaces has been an essential topic in both theories and applications of surface chemistry. As particle size is decreased from micron size down to true Carbon nano Colloid size (<10nm), surface forces are increasingly important. Nanoparticles at close proximity or high solids loading are expected to show a different behavior than what can be estimated from continuum and mean field theories. This paper use Water and CNC fluid at normal cooling system of EGR. Experimental result showed all good agreement at Re=$2.54{\times}10^{4}$.

불규칙 이동분포하중을 받는 타이어의 구조 진동 소음 제어를 위한 음향방사 해석 (Sound Radiation Analysis for Structural Vibration Noise Control of Tire Under the Action of Random Moving Line Forces)

  • 김병삼;이성철
    • 소음진동
    • /
    • 제5권2호
    • /
    • pp.169-181
    • /
    • 1995
  • A theoretical model has been studied to describe the sound radiation analysis for structural vibration noise control of tire under the action of random moving line forces. When a tire is analyzed, it has been modeled as a curved beam with distributed springs and dash-pots which represent the radial, tangential stiffness and damping of tire, respectively. The reaction due to fluid loading on the vibratory response of the curved beam is taken into account. The curved beam is assumed to occupy the plane y = 0 and to be axially infinite. The material of curved beam and elastic foundation are assumed to be lossless, and governed by the law of Bernoulli-Euler beam theory. The expression for sound power is integrated numerically and its results examined as a function of Mach number(M), wavenumber ratio(.gamma.) and stiffness factor(.PSI.). The experimental investigation for structural vibration noise of tire under the action of random moving line forces has been made. Based on the STSF(Spatial Transformation of Sound Field) techniques, the sound power and sound radiation are measured. The experimental results show that operating condition, material properties and design factors of the tire have a great effect on the sound power and sound radiation characteristics.

  • PDF

Variation in wind load and flow of a low-rise building during progressive damage scenario

  • Elshaer, Ahmed;Bitsuamlak, Girma;Abdallah, Hadil
    • Wind and Structures
    • /
    • 제28권6호
    • /
    • pp.389-404
    • /
    • 2019
  • In coastal regions, it is common to witness significant damages on low-rise buildings caused by hurricanes and other extreme wind events. These damages start at high pressure zones or weak building components, and then cascade to other building parts. The state-of-the-art in experimental and numerical aerodynamic load evaluation is to assume buildings with intact envelopes where wind acts only on the external walls and correct for internal pressure through separate aerodynamic studies. This approach fails to explain the effect of openings on (i) the external pressure, (ii) internal partition walls; and (iii) the load sharing between internal and external walls. During extreme events, non-structural components (e.g., windows, doors or rooftiles) could fail allowing the wind flow to enter the building, which can subject the internal walls to lateral loads that potentially can exceed their load capacities. Internal walls are typically designed for lower capacities compared to external walls. In the present work, an anticipated damage development scenario is modelled for a four-story building with a stepped gable roof. LES is used to examine the change in the internal and external wind flows for different level of assumed damages (starting from an intact building up to a case with failure in most windows and doors are observed). This study demonstrates that damages in non-structural components can increase the wind risk on the structural elements due to changes in the loading patterns. It also highlights the load sharing mechanisms in low rise buildings.

철도용 터널형 방음벽 개발연구: 설계 방향 (Noise Protection Roof: Partial Opening Effect for Noise Reduction)

  • 김태민;김정태
    • 한국철도학회논문집
    • /
    • 제18권6호
    • /
    • pp.522-532
    • /
    • 2015
  • 본 연구에서는 철도 교량 위를 주행하는 철도 소음에 의한 고층 공동주택 거주민들의 철도 소음 피해를 최소화할 뿐 아니라, 방음시설에 미치는 풍하중 및 자중을 동시에 감소시키는 방안으로 터널형 방음벽의 벽면부 개방을 검토하였다. 광음향기법, 전산 유체 역학 및 구조 역학을 이용하여 방음 효과, 유동 효과 및 구조 경량화가 고려된 터널형 방음벽 설계 및 효과를 예측하였다. 해석결과, 벽면부를 부분 개방하여 경량화 및 풍하중 감소 효과를 얻을 수 있었으며, 방음시설의 풍하중은 최대 30% 감소되었다. 부분 개방으로 인해 철도소음의 피해가 특정 높이에서 증가하기 때문에 이를 보완하기 위하여 개방된 부분에 소음기 형태의 음향 루우버 설치를 검토하였다. 음향 루우버의 경우 기존 방음재료의 차음성능과 유사한 성능이 존재하도록 개공율에 따른 유동 해석과 차음성능 해석을 수행하였다. 개공율 30~40% 개방 시, 차음성능 10dB를 만족하며 풍하중이 약 25% 저감되는 것으로 분석되었다. 결과적으로 터널형 방음벽의 벽면부 개방과 음향 루우버 설치는 경량화 및 풍하중에는 긍정적인 효과를 보여주며, 부분 개방과 함께 적절한 방음 재료와 방음설계가 동시에 적용될 경우, 거주민들이 요구하는 5-10dB 수준의 소음저감 효과가 나타나는 것으로 분석되었다.

Validation study on numerical simulation of RC response to close-in blast with a fully coupled model

  • Gong, Shunfeng;Lu, Yong;Tu, Zhenguo;Jin, Weiliang
    • Structural Engineering and Mechanics
    • /
    • 제32권2호
    • /
    • pp.283-300
    • /
    • 2009
  • The characteristic response of a structure to blast load may be divided into two distinctive phases, namely the direct blast response during which the shock wave effect and localized damage take place, and the post-blast phase whereby progressive collapse may occur. A reliable post-blast analysis depends on a sound understanding of the direct blast effect. Because of the complex loading environment and the stress wave effects, the analysis on the direct effect often necessitates a high fidelity numerical model with coupled fluid (air) and solid subdomains. In such a modelling framework, an appropriate representation of the blast load and the high nonlinearity of the material response is a key to a reliable outcome. This paper presents a series of calibration study on these two important modelling considerations in a coupled Eulerian-Lagrangian framework using a hydrocode. The calibration of the simulated blast load is carried out for both free air and internal explosions. The simulation of the extreme dynamic response of concrete components is achieved using an advanced concrete damage model in conjunction with an element erosion scheme. Validation simulations are conducted for two representative scenarios; one involves a concrete slab under internal blast, and the other with a RC column under air blast, with a particular focus on the simulation sensitivity to the mesh size and the erosion criterion.

탄소나노콜로이드 냉각수를 사용하여 자동차 엔진성능의 향상에 관한 연구 (A Study on the Effect of Automotive Engine Performance by Using Carbon Nano Colloid Cooling Water)

  • 이중섭;이병호
    • 한국자동차공학회논문집
    • /
    • 제19권5호
    • /
    • pp.134-142
    • /
    • 2011
  • Although combustion is essential in most energy generation processes, it is one of the major causes of air pollution. Exhaust pipes with circular fin were designed to study the effect of cooling the recirculated exhaust gases (EGR) of Diesel engines on the chemical composition of the exhaust gases and the reduction in the percentages of pollutant emissions. The gases examined in this study were oxides of nitrogen (NOx), carbon dioxide ($CO_2$) and carbon monoxide (CO). In addition, $O_2$ concentration in the exhaust was measured. The designs adopted in this study were about exhaust pipes with solid and hollow fins around them direct surface force measurement in water using a nano size colloidal probe technique. The direct force measurement between colloidal surfaces has been an essential topic in both theories and applications of surface chemistry. As particle size is decreased from micron size down to true Carbon nano Colloid size (<10 nm), surface forces are increasingly important. Nano particles at close proximity or high solids loading are expected to show a different behavior than what can be estimated from continuum and mean field theories. The current tools for directly measuring interaction forces such as a surface force apparatus or atomic force microscopy (AFM) are limited to particles much larger than nano size. This paper use Water and CNC fluid at normal cooling system of EGR. Experimental result showed all good agreement at Re=$2.54{\times}10^4$ by free convection and Re=$3.36{\times}10^4$ by forced air furnace.

광양 제품부두의 계류안정성 해석 (Dynamic Analysis for the Mooring Safety at KwangYang Port)

  • 김영복;정태권;김세원;김중엽;김영훈
    • 한국해안·해양공학회논문집
    • /
    • 제22권6호
    • /
    • pp.423-428
    • /
    • 2010
  • 본 계류안정성 해석은 광양만 부두의 포항제철 제품 및 고철부두에 대한 적정 선박을 선정하는 방법의 하나로서 수행되었다. 계류안정성 해석을 위해서는 우선 제품부두에 정박하는 기준이 되는 대상선박을 선정하여 각 선박의 운동특성을 파악하고, 이것을 바탕으로 각 대상 선박의 유체력을 계산한 후 파랑, 바람 및 조류를 고려하여 안벽에 계류된 선박의 계류안정성해석을 수행하였다. 이를 통해 광양 제품부두에서의 계류안정성을 보장하는 적정한 선박 선정기준을 개선하고자 하였다.

An integrated model for pore pressure accumulations in marine sediment under combined wave and current loading

  • Zhang, Y.;Jeng, D.-S.;Zha, H.-Y.;Zhang, J.-S.
    • Geomechanics and Engineering
    • /
    • 제10권4호
    • /
    • pp.387-403
    • /
    • 2016
  • In this paper, an integrated model for the wave (current)-induced seabed response is presented. The present model consists of two parts: hydrodynamic model for wave-current interactions and poro-elastic seabed model for pore accumulations. In the wave-current model, based on the fifth-order wave theory, ocean waves were generated by adding a source function into the mass conservation equation. Then, currents were simulated through imposing a steady inlet velocity on one domain and pressure outlet on the other side. In addition, both of the Reynolds-Averaged Navier-Stokers (RANS) Equations and $k-{\varepsilon}$ turbulence model would be applied in the fluid field. Once the wave pressures on the seabed calculated through the wave-current interaction model, it would be applied to be boundary conditions on the seabed model. In the seabed model, the poro-elastic theory would be imposed to simulate the seabed soil response. After comparing with the experimental data, the effect of currents on the seabed response would be examined by emphasize on the residual mechanisms of the pore pressure inside the soil. The build-up of the pore water pressure and the resulted liquefaction phenomenon will be fully investigated. A parametric study will also be conducted to examine the effects of waves and currents as well as soil properties on the pore pressure accumulation.

Pressure distribution on rectangular buildings with changes in aspect ratio and wind direction

  • Lee, Young Tae;Boo, Soo Ii;Lim, Hee Chang;Misutani, Kunio
    • Wind and Structures
    • /
    • 제23권5호
    • /
    • pp.465-483
    • /
    • 2016
  • This study aims to enhance the understanding of the surface pressure distribution around rectangular bodies, by considering aspects such as the suction pressure at the leading edge on the top and side faces when the body aspect ratio and wind direction are changed. We carried out wind tunnel measurements and numerical simulations of flow around a series of rectangular bodies (a cube and two rectangular bodies) that were placed in a deep turbulent boundary layer. Based on a modern numerical platform, the Navier-Stokes equations with the typical two-equation model (i.e., the standard $k-{\varepsilon}$ model) were solved, and the results were compared with the wind tunnel measurement data. Regarding the turbulence model, the results of the $k-{\varepsilon}$ model are in overall agreement with the experimental results, including the existing data. However, because of the blockage effects in the computational domain, the pressure recovery region is underpredicted compared to the experimental data. In addition, the $k-{\varepsilon}$ model sometimes will fail to capture the exact flow features. The primary emphasis in this study is on the flow characteristics around rectangular bodies with various aspect ratios and approaching wind directions. The aspect ratio and wind direction influence the type of wake that is generated and ultimately the structural loading and pressure, and in particular, the structural excitation. The results show that the surface pressure variation is highly dependent upon the approaching wind direction, especially on the top and side faces of the cube. In addition, the transverse width has a substantial effect on the variations in surface pressure around the bodies, while the longitudinal length has less influence compared to the transverse width.