Browse > Article
http://dx.doi.org/10.7841/ksbbj.2011.26.1.069

Production of Gemcitabine-Loaded Poly (L-lactic acid) Microparticles Using Supercritical Carbon Dioxide: Effect of Process Parameters  

Joo, Hyun-Jae (Department of Chemical Engineering, The University of Suwon)
Jung, In-Il (Department of Chemical Engineering, The University of Suwon)
Lim, Gio-Bin (Department of Chemical Engineering, The University of Suwon)
Ryu, Jong-Hoon (Department of Chemical Engineering, The University of Suwon)
Publication Information
KSBB Journal / v.26, no.1, 2011 , pp. 69-77 More about this Journal
Abstract
In this study, poly (L-lactic acid) (PLLA) microparticles containing gemcitabine hydrochloride were prepared by a supercritical fluid process, called aerosol solvent extraction system (ASES), utilizing supercritical carbon dioxide as antisolvent. The influence of process parameters such as temperature, pressure, $CO_2$ and solution flow rate, solution concentration, and feed ratio of drug to polymer on the morphology and characteristics of the microparticles was studied in detail. The gemcitabine-loaded microparticles exhibited a spherical shape with a smooth surface. The entrapment efficiency of gemcitabine increased with increasing temperature, solution concentration and $CO_2$ flow rate and with decreasing drug/polymer feed ratio. The maximum drug loading obtained from the ASES process was found to be about 11%. The ASES-processed PLLA microparticles containing gemcitabine showed a relatively high initial burst due to the presence of surface pores on the microparticles and the poor affinity between drug and polymer.
Keywords
gemcitabine; poly (L-lactic acid); supercritical carbon dioxide; microparticle; ASES;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Kim, C.-J. (1999) Release kinetics of coated, donut-shaped tablets for water soluble drugs. Eur. J. Pharm. Sci. 7: 237-242.   DOI   ScienceOn
2 J. H. kim, S. Y. Lee, B. Y. Kim, J. H. Ryu, and G. B. Lim (2003) Preparation of L-PLA microparticles using pure and cosolvent-modified supercritical carbon dioxide. Korean J. Biotechnol. Bioeng. 18: 385-392.
3 Tu, L. S., F. Dehghani, and N. R. Foster (2002) Micronisation and microencapsulation of pharmaceuticals using a carbon dioxide antisolvent. Powder Technol. 126: 134-149.   DOI   ScienceOn
4 Kim, M. Y., Y. W. Lee, H. S. Byun, and J. S. Lim (2006) Recrystallization of poly (L-lactic acid) into submicrometer particles in supercritical carbon dioxide. Ind. Eng. Chem. Res. 45: 3388-3392.   DOI   ScienceOn
5 Song, K. H., C.-H. Lee, J. S. Lim, and Y.-W. Lee (2002) Preparation of L-PLA submicron particles by a continuous supercritical antisolvent precipitation process. Korean J. Chem. Eng. 19: 139-145.   DOI   ScienceOn
6 Reverchon, E., G. Della Porta, and M. G. Falivene (2000) Process parameters and morphology in amoxicillin micro and submicro particles generation by supercritical antisolvent precipitation. J. Supercrit. Fluids 17: 239-248.   DOI   ScienceOn
7 Taki, S., E. Badens, and G. Charbit (2001), Controlled release system formed by supercritical anti-solvent coprecipitation of a herbicide and a biodegradable polymer. J. Supercrit. Fluids 21: 61-70.   DOI   ScienceOn
8 Ritger, P. L. and N. A. Peppas (1987) A simple equation for description of solute release II. Fickian and anomalous release from swellable devices. J. Contro. Rel. 5: 37-42.   DOI   ScienceOn
9 Bahrami, M. and S. Ranjbarian (2007) Production of micro-and nano-composite particles by supercritical carbon dioxide. J. Supercrit. Fluids 40: 263-283.   DOI   ScienceOn
10 Martin, A. and M. J. Cocero (2008) Micronization processes with supercritical fluids: fundamentals and mechanisms. Adv. Drug Del. Rev. 60: 339-350.   DOI   ScienceOn
11 Mangeold, C. (2001) Chemotherapy for advanced non-small cell lung cancer. Semin. Oncol. 28: 1-6.   DOI
12 Locher, C., E. Fabre-Guillevin, F. Brunetti, J. Auroux, J. Charles Delchier, P. Piedbois, and L. Zelek (2008) Fixed-dose rate gemcitabine in elderly patients with advanced pancreatic cancer: An observational study. Crit. Rev. Oncol. Hematol. 68: 178-182.   DOI   ScienceOn
13 Fruscella, E., D. Gallo, G. Ferrandina, G. D'Agostino, and G. Scambia (2003) Gemcitabine: current role and future options in the treatment of ovarian cancer. Crit. Rev. Oncol. Hematol. 48: 81-88.   DOI   ScienceOn
14 Chen, A.-Z., X.-M. Pu, Y.-Q. Kang, L. Liao, Y.-D. Yao, and G.-F. Yin (2007) Study of poly (L-lacide) microparticles based on supercritical $CO_2$. J. Mater. Sci. Mater. Med. 18: 2339-2345.   DOI   ScienceOn
15 Wirk, B. and E. Perez (2006) Role of gemcitabine in breast cancer management: An update. Semin. Oncol. 33: 6-14.
16 Maase, H. V. D. (2001) Gemcitabine in advanced bladder cancer. Semin. Oncol. 28: 11-14.   DOI
17 Umanzor, J., M. Aguiluz, C. Pineda, S. Andrade, M. Erazo, C. Flores, and S. Santillana (2006) Concurrent cisplatin/gemcitabine chemotherapy along with radiotherapy in locally advanced cervical carcinoma: A phase II trial. Gynecol. Oncol. 100: 70-75.   DOI   ScienceOn
18 J. Jung and M. Perrut (2001) Particle design using supercritical fluids: Literature and patent survey. J. Supercrit. Fluids 20: 179-219.   DOI   ScienceOn
19 Feng, S. S. and S. Chien (2003) Chemotherapeutic engineering: Application and further development of chemical engineering principles for chemotherapy of cancer and other diseases. Chem. Eng. Sci. 58: 4087-4114.   DOI   ScienceOn
20 Park, J. H., M. Ye, and K. Park (2005) Biodegradable polymers for microencapsulation of drugs. Molecules 10: 146-161.   DOI   ScienceOn
21 Langer, R. (2006) Biomaterials for drug delivery and tissue engineering. MRS Bull. 31: 477-485.   DOI
22 Jain, R. A. (2000) The manufacturing techniques of various drug loaded biodegradable poly (lactide-co-glycolide) (PLGA) devices. Biomaterials 21: 2475-2490.   DOI   ScienceOn
23 Ghaderi, R. (2000) A supercritical fluids extraction process for the production of drug loaded biodegradable microparticles. Ph. D. Dissertation, Uppsala University, Uppsala, Sweden.
24 Li, M., O. Rouaud, and D. Poncelet (2008) Microencapsulation by solvent evaporation: State of the art for process engineering approaches. Int. J. Pharm. 363: 26-39.   DOI   ScienceOn
25 Kompella, U. B. and K. Koushik (2001) Preparation of drug delivery systems using supercritical fluid technology. Crit. Rev. Ther. Drug Carr. Syst. 18: 173-199.
26 Yeo, S. D. and E. Kiran (2005) Formation of polymer particles with supercritical fluids: A review. J. Supercrit. Fluids 34: 287-308.   DOI   ScienceOn