• 제목/요약/키워드: Fluid Viscosity

검색결과 723건 처리시간 0.027초

ER 유체의 채널유동에 대한 직접수치해석 (Direct Numerical Simulation of an Electro-Rheological Channel Flow)

  • 조상호;최형권;유정열
    • 대한기계학회논문집B
    • /
    • 제28권1호
    • /
    • pp.72-80
    • /
    • 2004
  • Steady flow of an ER (electro-rheological) fluid in a two-dimensional electrode channel is studied by using FEM. Hydrodynamic interactions between the particles and the fluid are calculated by solving the Navier-Stokes equation combined with the equation of motion for each particle, where the multi-body electrostatic interaction is described by using point-dipole model. Motion of the particles in the ER fluid is elucidated in conjunction with the mechanisms of the flow resistance and the increase of viscosity. The ER effects have been studied by varying the Mason number and volume fraction of particles. These parameters have an influence on the formation of the chains resulting in the changes of the fluid velocity and the effective viscosity of ER fluids.

점탄성 유체의 부력에 의한 열전달 수치해석 (Numerical analysis on heat transfer due to buoyancy force of viscoelastic fluid)

  • 안성태;손창현;신세현
    • 한국전산유체공학회지
    • /
    • 제4권2호
    • /
    • pp.9-16
    • /
    • 1999
  • The present study investigates flow character and heat transfer behaviors of viscoelastic non-Newtonian fluid in a 2:1 rectangular duct. An axially-constant heat flux on bottom wall and peripherally constant temperature boundary condition(H1) was adopted. The Reiner-Rivlin fluid model is used as the normal stress model for the viscoelastic fluid and temperature-dependent viscosity model is adopted. The present results show a signifiant change of the main flow field which causes a large heat transfer enhancement. This phenomena can be explained by the combined effect of buoyancy, temperature-dependent viscosity and viscoelastic property on the flow.

  • PDF

ER 유체의 유동특성에 관한 실험적 연구 II (분산계 ER 유체의 점도-온도 특성) (Experimental Investigation on the Flow Characteristics of ER Fluids II (2nd Report, Viscosity-Temperature Characteristics of Dispersive ER Fluids))

  • 김도태
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 1999년도 추계학술대회 논문집 - 한국공작기계학회
    • /
    • pp.393-398
    • /
    • 1999
  • The temperature dependence of the viscosity was determined for an electrorheological(ER) fluid consisting of 35 weight% zeolite particles in hydraulic oil 46cSt. Thermal activation analysis were performed by changing the ER fluid's temperature from -1$0^{\circ}C$ to 5$0^{\circ}C$ at fixed electric field. According to the analysis, the activation energy for flow was about 79.64kJ/mole at E=0kV/mm. Generally, the hydraulic oil 46cSt will be operated at the temperature of about 4$0^{\circ}C$, the ER fluid's electric field dependence of viscosities were investigated at this temperature. also, the influence of adding the dispersant(Carbopl 940) on electrorheological effect of the ER fluid was discussed.

  • PDF

원형 봉의 비틀림 진동과 인접 점성유체의 상호작용 (The Interaction Between the Torsional Vibration of a Circular Rod and an Adjacent Viscous Fluid)

  • 전한용;김진오
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 춘계학술대회논문집B
    • /
    • pp.378-385
    • /
    • 2001
  • This paper deals with the effect of an adjacent viscous fluid on the torsional vibration of a circular rod excited by a transducer at one end. The interaction between the torsional vibration of the rod and the fluid has been studied theoretically and expressed in terms of the mechanical impedance. The theoretically-obtained trend that the mechanical impedance is proportional to the square root of the viscosity times density of the fluid has been confirmed by the impedance measurement. The paper demonstrates that a torsionally-vibrating rod can be used as a sensor measuring the viscosity of a fluid.

  • PDF

Deterioration of High Viscosity Index Hydraulic Fluids During Use in Construction Equipments

  • Kwon, W.S.;Moon, W.S.
    • 한국윤활학회:학술대회논문집
    • /
    • 한국윤활학회 2002년도 proceedings of the second asia international conference on tribology
    • /
    • pp.353-354
    • /
    • 2002
  • This study represents the newly advanced formulation of hydraulic fluids for extended drain interval and introduces the performance results of used oil samples from various excavators. The used oil samples, in this paper, show that there is a sharp change in viscosity drop and moderate additive depletion. For the extension of hydraulic fluid life. it is necessary to improve the stability of viscosity and oxidation. New target properties from the used oil analysis were proposed for extended life. Hydraulic oil with the viscosity index of 140 and improved thermal stability consists of group III base oil, showed the possibility of extension of fluid life.

  • PDF

유압유 점도가 액추에이터 성능에 미치는 영향 (Effects of Viscosity of Hydraulic Oil on the Performance of Actuator)

  • 김진형;한수민;김윤제
    • 한국유체기계학회 논문집
    • /
    • 제19권1호
    • /
    • pp.31-36
    • /
    • 2016
  • Hydraulic actuator is a primary component of the hydraulic valve systems. In this study, the thrust performance of hydraulic actuator was studied with different values of viscosity of hydraulic oil and rod diameter. Numerical analysis was performed using the commercial CFD code, ANSYS with 2-way FSI(Fluid-Structure Interaction) method and $k-{\varepsilon}$ turbulent model. Results show that increase in viscosity of hydraulic oil reduces the thrust of hydraulic actuator. In order to satisfy the output required of the actuator, it is necessary to compensate for the operating pressure. The results of pressure, velocity and thrust efficiency distributions in the hydraulic actuator were graphically depicted.

고점성용 펌프의 성능해석 (Pump Performance Analyses with High Viscosity Fluids)

  • 노형운;서상호;김동주
    • 유체기계공업학회:학술대회논문집
    • /
    • 유체기계공업학회 2003년도 유체기계 연구개발 발표회 논문집
    • /
    • pp.367-370
    • /
    • 2003
  • In this study the effects of fluid viscosity on the pump performances of a conventional centrifugal pump were experimentally studied. The study aimed to compare the pump characteristics for water and high viscosity fluids. The Working fluids are water, aqueous sugar solution and glycerin solution. The pump characteristics of total head and efficiency with high viscosity fluids were different. The performance curves of efficiency for the sugar and glycerin solutions were decreased up to 8.1% and 12.9% than that of water.

  • PDF

Renewable Low-viscosity Dielectrics Based on Vegetable Oil Methyl Esters

  • Yu, Hui;Yu, Ping;Luo, Yunbai
    • Journal of Electrical Engineering and Technology
    • /
    • 제12권2호
    • /
    • pp.820-829
    • /
    • 2017
  • Vegetable oil dielectrics have been used in transformers as green alternatives to mineral insulating oils for about twenty years, because of their advantages of non-toxic, biodegradability, and renewability. However, the viscosity of vegetable oils is more than 3 times of mineral oils, which means a poor heat dissipation capacity. To get low-viscosity dielectrics, transesterification and purification were performed to prepare vegetable oil methyl esters in this study. Electrical and physical properties were determined to investigate their potential as dielectrics. The results showed that the methyl ester products had good dielectric strengths, high water saturation and enough fire resistance. The viscosities (at $40^{\circ}C$) were 0.2 times less than FR3 fluid, and 0.7 times less than mineral oil, which indicated superior cooling capacity as we expected. With the assistance of 0.5 wt% pour point depressants, canola oil methyl ester exhibited the lowest pour point ($-26^{\circ}C$) among the products which was lower than FR3 fluid ($-21^{\circ}C$) and 25# mineral oil ($-23^{\circ}C$). Thus, canola oil methyl ester was the best candidate as a low-viscosity vegetable oil-based dielectric. The low-viscosity fluid could extend the service life of transformers by its better cooling capacity compared with nature ester dielectrics.

Magnetohydrodynamic peristalsis of variable viscosity Jeffrey liquid with heat and mass transfer

  • Farooq, S.;Awais, M.;Naseem, Moniza;Hayat, T.;Ahmad, B.
    • Nuclear Engineering and Technology
    • /
    • 제49권7호
    • /
    • pp.1396-1404
    • /
    • 2017
  • The mathematical aspects of Dufour and Soret phenomena on the peristalsis of magnetohydrodynamic (MHD) Jeffrey liquid in a symmetric channel are presented. Fluid viscosity is taken variably. Lubrication approach has been followed. Results for the velocity, temperature, and concentration are constructed and explored for the emerging parameters entering into the present problem. The plotted quantities lead to comparative study between the constant and variable viscosities fluids. Graphical results indicate that for non-Newtonian materials, pressure gradient is maximum, whereas pressure gradient is slowed down for variable viscosity. Also both velocity and temperature in the case of variable viscosity are at maximum when compared with results for constant viscosity.

토석류 이동의 레올로지적 특성 (Rheological Characteristics of Debris Flows)

  • 김상규;서홍석
    • 한국지반공학회지:지반
    • /
    • 제13권5호
    • /
    • pp.125-132
    • /
    • 1997
  • 토석류는 다양한 크기의 흙 입자와 물이 고루 섞여 점성을 가진 유체처럼 하방향으로 이동한다는 사실이 관찰되었다. 이 관찰로부터 토석류를 비선행적인 점도를 가진 비뉴톤 유체처럼 거동하는 것으로 간주할 수 있다. 이 논문에서는 토석류의 레올로지적 특성을 규명하기 위해 산사태 현장에서 채취한 시료를 가지고 점도계를 사용하여 일련의 점도시험을 수행하였다. 그 결과, 토석류는 비뉴톤 유체 중 빙함 소성 모델로 거동한다는 사실이 밝혀졌다. 이 모델을 이용하면 토 석류의 이동을 예측할 수 있다.

  • PDF