• Title/Summary/Keyword: Fluid Induced Instability

Search Result 62, Processing Time 0.027 seconds

Vibration Stability Analysis of Multi wall Carbon Nanotubes Considering Conveying Fluid Effect (유체유동효과를 고려한 다중벽 탄소나노튜브의 진동 및 안정성 해석)

  • Yun, Kyung-Jae;Choi, Jong-Woon;Song, Oh-Seop
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2012.04a
    • /
    • pp.219-224
    • /
    • 2012
  • In this paper, vibration and flow-induced flutter instability analysis of cantilever multiwall carbon nanotubes conveying fluid and modelled as a thin-walled beam is investigated. Non-classical effects of transverse shear and rotary inertia are incorporated in this study. The governing equations and the associated boundary conditions are derived through Hamilton's principle. Numerical analysis is performed by using extend Galerkin method which enables us to obtain more exact solutions compared with conventional Galerkin method. Cantilevered carbon nanotubes are damped with decaying amplitude for flow velocity below a certain critical value, however, beyond this critical flow velocity, flutter instability may occur. Variations of critical flow velocity with both radius ratio and length of carbon nanotubes are investigated and pertinent conclusion is outlined.

  • PDF

Nonlinear wind-induced instability of orthotropic plane membrane structures

  • Liu, Changjiang;Ji, Feng;Zheng, Zhoulian;Wu, Yuyou;Guo, Jianjun
    • Wind and Structures
    • /
    • v.25 no.5
    • /
    • pp.415-432
    • /
    • 2017
  • The nonlinear aerodynamic instability of a tensioned plane orthotropic membrane structure is theoretically investigated in this paper. The interaction governing equation of wind-structure coupling is established by the Von $K\acute{a}rm\acute{a}n's$ large amplitude theory and the D'Alembert's principle. The aerodynamic force is determined by the potential flow theory of fluid mechanics and the thin airfoil theory of aerodynamics. Then the interaction governing equation is transformed into a second order nonlinear differential equation with constant coefficients by the Bubnov-Galerkin method. The critical wind velocity is obtained by judging the stability of the second order nonlinear differential equation. From the analysis of examples, we can conclude that it's of great significance to consider the orthotropy and geometrical nonlinearity to prevent the aerodynamic instability of plane membrane structures; we should comprehensively consider the effects of various factors on the design of plane membrane structures; and the formula of critical wind velocity obtained in this paper provides a more accurate theoretical solution for the aerodynamic stability of the plane membrane structures than the previous studies.

Analysis of Fully Developed Multilayer Flow in Microchannel with a Rectangular Cross Section (직사각형 단면을 갖는 미세채널에서 완전 발달된 다층유동에 관한 해석)

  • Kim, Jung-Kyung;Jung, Chan-Il;Jang, Jun-Keun;Yoo, Jung-Yul
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.27 no.5
    • /
    • pp.644-654
    • /
    • 2003
  • An analytical solution for a vertically stratified viscous flow in a microchannel with a rectangular cross-section is constructed, assuming fully developed laminar flow where the interfaces between the fluid layers are flat. Although the solution is for n-layer flow, restricted results to symmetrical three-layer flow are presented to investigate the effects of the viscosity and thickness ratios of the fluid layers and the aspect ratio of the microchannel on the flow field. Relations between the flow rate and thickness ratios of the fluid layers with varying viscosity distributions are found, considering the cross -sectional velocity profiles which vary noticeably with the three parameters and differ significantly from the velocity profiles of the flow between infinite parallel plates. Interfacial instability induced by the viscosity stratification in the microchannel is discussed referring to previous studies on the instability analysis for plane multilayer flow. Exact solution derived in the present study can be used for examining a diffusion process and three -dimensional stability analysis. More works are needed to formulate the equations including the effects of interfacial' tension between immiscible liquids and surface wettability which are important in microscale transport phenomena.

A case study on the vibration by fluid induced instability at large steam turbine-generator (대형 터빈-발전기에서의 유체 불안정진동 해소사례)

  • Han, Seung-Woo;Noh, Chel-Woo;Kim, In-Chul;Joo, In-Gouk;Kim, Myong-Shik
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.11a
    • /
    • pp.1066-1071
    • /
    • 2007
  • This case study refers to turbine-generator with retrofitted turbine rotor. Vibration problem occurring after the retrofit was mainly due to high vibration from exciter side. However, repeated test run and operation during scheduled maintenance caused high vibration from generator bearing, and post-overhaul test run before turbine vibration correction caused oil whip on the bearing. This case study shows how to analyze vibration condition of high turbine generator vibration detected during the post-overhaul test run and vibration condition of offline and online data to reflect it on establishing maintenance schedule and overhaul correction procedure. Vibration data could be acquired during steady load operation or even with varying speed and load. Each data is important for machinery condition evaluation. This case study shows that the vibration data during extreme condition is the key factor in analysis, which helps to find the machinery problem.

  • PDF

A Case Study on the Vibration by Fluid Induced Instability at Large Steam Turbine-generator (대형 터빈-발전기에서의 유체 불안정진동 해소사례)

  • Han, Seung-Woo;Roh, Cheol-Woo;Yoo, Mu-Sang;Kim, In-Chul;Joo, In-Gouk;Kim, Myong-Shik
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.18 no.2
    • /
    • pp.238-246
    • /
    • 2008
  • This case study refers to turbine-generator with retrofitted turbine rotor. Vibration problem occurring after the retrofit was mainly due to high vibration from exciter side. However, repeated test run and operation during scheduled maintenance caused high vibration from generator bearing, and post-overhaul test run before turbine vibration correction caused oil whip on the bearing. This case study shows how to analyze vibration condition of high turbine generator vibration detected during the post-overhaul test run and vibration condition of offline and online data to reflect it on establishing maintenance schedule and overhaul correction procedure. Vibration data could be acquired during steady load operation or even with varying speed and load. Each data is important for machinery condition evaluation. This case study shows that the vibration data during extreme condition is the key factor in analysis, which helps to find the machinery problem.

Pulsating fluid induced dynamic stability of embedded viscoelastic piezoelectric separators using different cylindrical shell theories

  • Pour, H. Rahimi;Arani, A. Ghorbanpour;Sheikhzadeh, Gh.
    • Steel and Composite Structures
    • /
    • v.24 no.4
    • /
    • pp.499-512
    • /
    • 2017
  • This paper deals with nonlinear dynamic stability of embedded piezoelectric nano-composite separators conveying pulsating fluid. For presenting a realistic model, the material properties of structure are assumed viscoelastic based on Kelvin-Voigt model. The separator is reinforced with single-walled carbon nanotubes (SWCNTs) which the equivalent material properties are obtained by mixture rule. The separator is surrounded by elastic medium modeled by nonlinear orthotropic visco Pasternak foundation. The separator is subjected to 3D electric and 2D magnetic fields. For mathematical modeling of structure, three theories of classical shell theory (CST), first order shear deformation theory (FSDT) and sinusoidal shear deformation theory (SSDT) are applied. The differential quadrature method (DQM) in conjunction with Bolotin method is employed for calculating the dynamic instability region (DIR). The detailed parametric study is conducted, focusing on the combined effects of the external voltage, magnetic field, visco-Pasternak foundation, structural damping and volume percent of SWCNTs on the dynamic instability of structure. The numerical results are validated with other published works as well as comparing results obtained by three theories. Numerical results indicate that the magnetic and electric fields as well as SWCNTs as reinforcer are very important in dynamic instability analysis of structure.

Dynamic instability response in nanocomposite pipes conveying pulsating ferrofluid flow considering structural damping effects

  • Esmaeili, Hemat Ali;Khaki, Mehran;Abbasi, Morteza
    • Structural Engineering and Mechanics
    • /
    • v.68 no.3
    • /
    • pp.359-368
    • /
    • 2018
  • This paper deals with the dynamic stability of nanocomposite pipes conveying pulsating ferrofluid. The pipe is reinforced by carbon nanotubes (CNTs) where the agglomeration of CNTs are considered based on Mori-Tanaka model. Due to the existence of CNTs and ferrofluid flow, the structure and fluid are subjected to axial magnetic field. Based on Navier-Stokes equation and considering the body forced induced by magnetic field, the external force of fluid to the pipe is derived. For mathematical modeling of the pipe, the first order shear deformation theory (FSDT) is used where the energy method and Hamilton's principle are used for obtaining the motion equations. Using harmonic differential quadrature method (HDQM) and Bolotin's method, the motion equations are solved for calculating the excitation frequency and dynamic instability region (DIR) of the structure. The influences of different parameters such as volume fraction and agglomeration of CNTs, magnetic field, structural damping, viscoelastic medium, fluid velocity and boundary conditions are shown on the DIR of the structure. Results show that with considering agglomeration of CNTs, the DIR shifts to the lower excitation frequencies. In addition, the DIR of the structure will be happened at higher excitation frequencies with increasing the magnetic field.

Experimental research on the mechanisms of condensation induced water hammer in a natural circulation system

  • Sun, Jianchuang;Deng, Jian;Ran, Xu;Cao, Xiaxin;Fan, Guangming;Ding, Ming
    • Nuclear Engineering and Technology
    • /
    • v.53 no.11
    • /
    • pp.3635-3642
    • /
    • 2021
  • Natural circulation systems (NCSs) are extensively applied in nuclear power plants because of their simplicity and inherent safety features. For some passive natural circulation systems in floating nuclear power plants (FNPPs), the ocean is commonly used as the heat sink. Condensation induced water hammer (CIWH) events may appear as the steam directly contacts the subcooled seawater, which seriously threatens the safe operation and integrity of the NCSs. Nevertheless, the research on the formation mechanisms of CIWH is insufficient, especially in NCSs. In this paper, the characteristics of flow rate and fluid temperature are emphatically analyzed. Then the formation types of CIWH are identified by visualization method. The experimental results reveal that due to the different size and formation periods of steam slugs, the flow rate presents continuous and irregular oscillation. The fluid in the horizontal hot pipe section near the water tank is always subcooled due to the reverse flow phenomenon. Moreover, the transition from stratified flow to slug flow can cause CIWH and enhance flow instability. Three types of formation mechanisms of CIWH, including the Kelvin-Helmholtz instability, the interaction of solitary wave and interface wave, and the pressure wave induced by CIWH, are obtained by identifying 67 CIWH events.

Computational Study on Aeroacoustics of an Elastic Cantilevered Trailing-Edge (탄성 날개 끝단의 공력 소음에 관한 전산해석 연구)

  • Hwang Bon Chang;Moon Young June
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2005.04a
    • /
    • pp.159-168
    • /
    • 2005
  • Noise generated by the blunt trailing edge of lifting surfaces is investigated in this study using fluid structure interaction theory. First, through the eddy modeling, noise generation doe to the flow instability on the rigid trailing edge is surveyed. Then the behavior of elastic cantileverd beam is investigated. Parametric study based on various material properties is employed to analyze the motion of the beam. Moreover, each eigenmode approach of cantilevered beam is used to find when flow induced vibration is resonant. To analyze elastic behavior of cantilever beam efficiently, moving grid generation technique based on non-conservative form of Navier-Stokes equation is used. Equation of the motion associated with the cantilever beam is discretized by the Galerkin procedure with forced vibration. As a consequence, behavior of the elastic cantilevered beam is stable when the first mode natural frequency of the material is relatively higher than that of flow induced pressure fluctuation.

  • PDF

Analysis of Fluid-Induced Vibration in the APR1400 Steam Generator Tube (신형경수로1400 증기발생기 전열관의 유체유발진동 해석)

  • 이광한;정대율;변성철
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.11a
    • /
    • pp.84-91
    • /
    • 2003
  • Flow-Induced Vibration of steam generator tubes may result in fretting wear damage at the tube-to-support locations. KSNP(Korean Standard Nuclear Power plant) steam generators experienced fretting wear in the upper part of U-bend above the central cavity region of steam generators. This region has conditions susceptible to the flow-induced vibration, such as high flow velocity, high void fraction, and longer unsupported span. To improve its performance, APR1400 steam generator is designed with additional supports in this region to reduce unsupported span and to reduce peak velocity in the central cavity region. In this paper, we examined its performance improvement using ATHOS code. The thermal-hydraulic condition in the region of secondary side of APR1400 steam generator is obtained using the ATHOS3 code. The effective mass for modal analysis is calculated using the void fraction, enthalpy, and operating pressure information from ATHOS3 code result. With the effective mass distribution along the tube, natural frequency and mode shape is obtained using ANSYS code. Finally, stability ratios and real mean squared displacements for selected tubes of the APR1400 steam generator are computed. From these results, the current design of the APR1400 steam generator are examined.

  • PDF