• 제목/요약/키워드: Fluid/material coupled numerical method

검색결과 13건 처리시간 0.021초

Numerical Analysis of Damping Effect of Liquid Film on Material in High Speed Liquid Droplet Impingement

  • Sasaki, Hirotoshi;Ochiai, Naoya;Iga, Yuka
    • International Journal of Fluid Machinery and Systems
    • /
    • 제9권1호
    • /
    • pp.57-65
    • /
    • 2016
  • By high speed Liquid Droplet Impingement (LDI) on material, fluid systems are seriously damaged, therefore, it is important for the solution of the erosion problem of fluid systems to consider the effect of material in LDI. In this study, by using an in-house fluid/material two-way coupled method which considers reflection and transmission of pressure, stress and velocity on the fluid/material interface, high-speed LDI on wet/dry material surface is simulated. As a result, in the case of LDI on wet surface, maximum equivalent stress are less than those of dry surface due to damping effect of liquid film. Empirical formula of the damping effect function is formulated with the fluid factors of LDI, which are impingement velocity, droplet diameter and thickness of liquid film on material surface.

유체 유동을 고려한 경사기능재료 원통셸의 연성진동 (Coupled Vibration of Functionally Graded Cylindrical Shells Conveying Fluid)

  • 김영완;김규호;위은중
    • 한국소음진동공학회논문집
    • /
    • 제19권11호
    • /
    • pp.1119-1125
    • /
    • 2009
  • The coupled fluid-structure interaction problem is analyzed using the theoretical method to investigate the coupled vibration characteristics of functionally graded material(FGM) cylindrical shells conveying an incompressible, inviscid fluid. Material properties are assumed to vary continuously through the thickness according to a power law distribution in terms of the volume fraction of the constituents. The steady flow of fluid is described by the classical potential flow theory. The motion of shell represented by the first order shear deformation theory(FSDT) to account for rotary inertia and transverse shear strains. The effect of internal fluid can be taken into consideration by imposing a relation between the fluid pressure and the radial displacement of the structure at the interface. Numerical examples are presented and compared with exiting results.

유체법을 이용한 유사스파크 방전의 기동 특성 해석 (Ignition Characteristics Analysis of Pseudospark Discharge using Fluid Method)

  • 심재학;주흥진;고광철;강형부
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 1997년도 춘계학술대회 논문집
    • /
    • pp.95-98
    • /
    • 1997
  • Theoritical predictions are given of the time dependence of charged particle densities and electric field in a pseudospark discharge. Our medel is based on a numerical solution of the continuity equation for electrons and positive ions and coupled with Poisson's equation for the electric field. From numerical results, we can identify phisical mechanisms that lead to the rapid rise in current in the onset of a pseudospark discharge.

  • PDF

상사해법을 이용한 쐐기형 물체 주위의 미세 극성유체 유동 특성에 관한 연구 (A Similarity Solution of the Characteristics of Micropolar Fluid Flow in the Vicinity of a Wedge)

  • 김윤제
    • 대한기계학회논문집B
    • /
    • 제23권8호
    • /
    • pp.969-977
    • /
    • 1999
  • A similarity solution of a steady laminar flow of micropolar fluids past wedges has been studied. The similarity variables found by Falkner and Skan are employed to reduce the streamwise-dependence in the coupled nonlinear boundary layer equations. Numerical solutions of the equations are then obtained using the fourth-order Runge-Kutta method and the distribution of velocity, micro-rotation, shear and couple stress across the boundary layer are obtained. These results are compared with the corresponding flow problems for Newtonian fluid past wedges with various wedge angles. Numerical results show that, keeping ${\beta}$ constant, the skin friction coefficient is lower for a micropolar fluid, as compared to a Newtonian fluid. For the case of constant material parameter K, however, the velocity distribution for a micropolar fluid is higher than that of a Newtonian fluid.

Behaviors of Anisotropic Fluids in the Vicinity of a Wedge

  • Kim, Youn-J.
    • Journal of Mechanical Science and Technology
    • /
    • 제14권6호
    • /
    • pp.690-698
    • /
    • 2000
  • The laminar boundary layer flow and heat transfer of anisotropic fluids in the vicinity of a wedge have been examined with constant surface temperature. The similarity variables found by Falkner and Skan are employed to reduce the stream wise-dependence in the coupled nonlinear boundary layer equations. The numerical solutions are presented using the fourth-order Runge - Kutta method and the distribution of velocity, micro-rotation, shear and couple stresses and temperature across the boundary layer are plotted. These results are also compared with the corresponding flow problems for Newtonian fluid over wedges. It is found that for a constant wedge angle, the skin friction coefficient is lower for micropolar fluid, as compared to Newtonian fluid. For the case of the constant material parameter K, however, the magnitude of velocity for anisotropic fluid is greater than that of Newtonian fluid. The numerical results also show that for a constant wedge angle with a given Prandtl number, Pr = I, the effect of increasing values of K results in increasing thermal boundary layer thickness for anisotropic fluid, as compared with Newtonian fluid. For the case of the constant material parameter K, however, the heat transfer rate for anisotropic fluid is lower than that of Newtonian fluid.

  • PDF

유체-구조 연성 문제의 형상 최적설계 (Shape Design Optimization of Fluid-Structure Interaction Problems)

  • 하윤도;김민근;조현규;조선호
    • 대한조선학회논문집
    • /
    • 제44권2호
    • /
    • pp.130-138
    • /
    • 2007
  • A coupled variational equation for fluid-structure interaction (FSI) problems is derived from a steady state Navier-Stokes equation for incompressible Newtonian fluid and an equilibrium equation for geometrically nonlinear structures. For a fully coupled FSI formulation, between fluid and structures, a traction continuity condition is considered at interfaces where a no-slip condition is imposed. Under total Lagrange formulation in the structural domain, finite rotations are well described by using the second Piola-Kirchhoff stress and Green-Lagrange strain tensors. An adjoint shape design sensitivity analysis (DSA) method based on material derivative approach is applied to the FSI problem to develop a shape design optimization method. Demonstrating some numerical examples, the accuracy and efficiency of the developed DSA method is verified in comparison with finite difference sensitivity. Also, for the FSI problems, a shape design optimization is performed to obtain a maximal stiffness structure satisfying an allowable volume constraint.

미세극성 유체 유동장에 놓여진 쐐기형 물체주위의 열경계층에 관한 연구 (A Study on the Thermal Boundary Layer Flow of a Micropolar Fluid in the Vicinity of a Wedge)

  • 김윤제
    • 유변학
    • /
    • 제11권2호
    • /
    • pp.122-127
    • /
    • 1999
  • 일정한 표면 온도를 갖는 쐐기형 물체 주위를 지나는 미세 극성유체의 정상상태 층류유동에 대하여 고찰하였다. Falkner & Skan에 의하여 유도된 상사해법을 이용하여 유동방향의 비선형 경계층 방정식의 해를 구하였다. 4계 Runge-Kutta법을 사용하여 Pr 수가 1일 경우의 열전달 특성을 수치적으로 해석하였고, 물질 매개변수에 대한 영향을 고찰하였다. 경계층을 가로지르는 무차원 속도와 Nusselt 수의 분포는 쐐기형 물체 주위를 지나는 Newtonian 유체의 경우와 비교하였다. Pr 수가 1이고 일정한 쐐기각을 가질 경우 물질 매개변수 K값이 증가할수록 Newtonian 유체의 경우보다 미세 극성유체의 경우 경계층의 두께가 증가하는 결과를 보였다. 그러나 물질매개변수 K값이 일정할 경우, Newtonian 유체보다 미세 극성유체의 열전달율이 더 작은 경향을 나타내었다.

  • PDF

CFD-DEM modeling of snowdrifts on stepped flat roofs

  • Zhao, Lei;Yu, Zhixiang;Zhu, Fu;Qi, Xin;Zhao, Shichun
    • Wind and Structures
    • /
    • 제23권6호
    • /
    • pp.523-542
    • /
    • 2016
  • Snowdrift formation on roofs should be considered in snowy and windy areas to ensure the safety of buildings. Presently, the prediction of snowdrifts on roofs relies heavily on field measurements, wind tunnel tests and numerical simulations. In this paper, a new snowdrift modeling method by using CFD (Computational Fluid Dynamics) coupled with DEM (Discrete Element Method) is presented, including material parameters and particle size, collision parameters, particle numbers and input modes, boundary conditions of CFD, simulation time and inlet velocity, and coupling calculation process. Not only is the two-way coupling between wind and snow particles which includes the transient changes in snow surface topography, but also the cohesion and collision between snow particles are taken into account. The numerical method is applied to simulate the snowdrift on a typical stepped flat roof. The feasibility of using coupled CFD with DEM to study snowdrift is verified by comparing the simulation results with field measurement results on the snow depth distribution of the lower roof.

Analysis of critical fluid velocity and heat transfer in temperature-dependent nanocomposite pipes conveying nanofluid subjected to heat generation, conduction, convection and magnetic field

  • Fakhar, Mohammad Hosein;Fakhar, Ahmad;Tabatabaei, Hamidreza
    • Steel and Composite Structures
    • /
    • 제30권3호
    • /
    • pp.281-292
    • /
    • 2019
  • In this paper, analysis of critical fluid velocity and heat transfer in the nanocomposite pipes conveying nanofluid is presented. The pipe is reinforced by carbon nanotubes (CNTs) and the fluid is mixed by $AL_2O_3$ nanoparticles. The material properties of the nanocomposite pipe and nanofluid are considered temperature-dependent and the structure is subjected to magnetic field. The forces of fluid viscosity and turbulent pressure are obtained using momentum equations of fluid. Based on energy balance, the convection of inner and outer fluids, conduction of pipe and heat generation are considered. For mathematical modeling of the nanocomposite pipes, the first order shear deformation theory (FSDT) and energy method are used. Utilizing the Lagrange method, the coupled pipe-nanofluid motion equations are derived. Applying a semi-analytical method, the motion equations are solved for obtaining the critical fluid velocity and critical Reynolds and Nusselt numbers. The effects of CNTs volume percent, $AL_2O_3$ nanoparticles volume percent, length to radius ratio of the pipe and shell surface roughness were shown on the critical fluid velocity, critical Reynolds and Nusselt numbers. The results are validated with other published work which shows the accuracy of obtained results of this work. Numerical results indicate that for heat generation of $Q=10MW/m^3$, adding 6% $AL_2O_3$ nanoparticles to the fluid increases 20% the critical fluid velocity and 15% the Nusselt number which can be useful for heat exchangers.

차량워셔액 가열시스템에서 충전재 및 유로의 재질에 따른 열전달 특성 연구 (Heat transfer characteristics with materials of the filler and flow path in vehicle washer heater system)

  • 차우섭;김태권
    • 한국산학기술학회논문지
    • /
    • 제15권5호
    • /
    • pp.2628-2634
    • /
    • 2014
  • 동절기에 차량 전면유리의 결빙이나 이물질을 제거하기 위하여 워셔액 가열시스템 적용이 점차 늘어나고 있다. 이 워셔액 가열 시스템은 짧은 시간동안 목표온도까지 워셔액이 가열되도록 설계되어야 한다. 본 연구에서는 급속하게 워셔액을 가열하기 위하여 차량 워셔액 가열 시스템의 내부 부품의 재질에 따라 열전달 특성을 해석하였다. 해석을 위해 열유동 전산해석에서 사용하고 있는 CFD(Computational Fluid Dynamics) 상용코드인 ANSYS-FLUENT 소프트웨어를 이용하였다. 본 모델은 3차원 비정상상태의 축대칭 모델로 Fluent에서 제공하는 압력기반(Pressure-Based) 기법 중의 하나인 Coupled 기법을 적용하였다. 이 결과를 통하여 충전재 및 유로의 최적화된 재질을 찾게 되었다. 충전재 재질은 낮은 밀도를 가진 공기가 실리콘카바이드보다 빠르게 가열되었다. 유로재질은 니켈보다 열전달계수가 약 4배 정도 큰 구리가 내부에 열을 균일하게 전달되어 메탄올의 가열 시간을 단축하여 효율이 더 높게 나왔다.