• Title/Summary/Keyword: Fluence

Search Result 380, Processing Time 0.023 seconds

A Study on the Mortality in Oxygen and Toxic Gas Concentration According using Experimental Animals (실험동물을 이용 산소 및 유해가스 농도에 따른 치사율 연구)

  • Kim, Hyeon-Yeong
    • Journal of the Korean Institute of Gas
    • /
    • v.17 no.4
    • /
    • pp.18-25
    • /
    • 2013
  • It may occur health hazards or death by suffocation or acute poisoning in case of oxygen deficiency in ambient or exposure to harmful gas. As a part of accident prevention, we studied the change of activity and lethal dose by changing the concentration of several hazardous gas with inhalation exposure chamber and laboratory animals. We investigated the lethality and motility change during either the 4 hrs whole body exposure to oxygen, nitrogen, toluene, $H_2S$, CO and 48 recovery. As results, it is estimated that 5% oxygen concentration as lethal concentration and 5.5% as $LC_{50}$ (rat, 4 hrs) with statistics for dose-response. The results of lethality in oxygen deficient condition (approximately 6%), the lethalities were 40%, 20% with 20 ppm $H_2S$, 600 ppm CO respectively, and was not increased the lethality with 8% CO. Thus, it was confirmed that the $H_2S$, CO had influence to lethal dose, while toluene had low fluence.

Decontamination Characteristics of 304 Stainless Steel Surfaces by a Q-switched Nd:YAG Laser at 532 nm (532 nm 파장의 큐스위치 Nd:YAG 레이저를 이용한 스테인리스 스틸 표면 제염특성)

  • Moon, Jei-Kwon;Baigalmaa, Byambatseren;Won, Hui-Jun;Lee, Kune-Woo
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.8 no.3
    • /
    • pp.181-188
    • /
    • 2010
  • Metal surface decontamination characteristics were investigated by using a laser ablation method. A second harmonic generation of a Q-switched Nd:YAG laser with a wave length of 532 nm, a pulse energy of 150 mJ and a pulse width of 5 ns was employed to assess the decontamination performance for metal surfaces contaminated with $CsNO_3$, $Co(NH_4)_2(SO_4)_2$, $Eu_2O_3$ and $CeO_2$. The ablation behavior was investigated for the decontamination variables such as a number of laser shots, laser fluence and an irradiation angle. Their optimum values were found to be 8, 13.3 J/$cm^2$ and $30^{\circ}$, respectively. The decontamination efficiency was different depending on the kinds of the contaminated ions, due to their different melting and boiling points and was in the order: $CsNO_3>Co(NH_4)_2(SO_4)_2>Eu_2O_3>CeO_2$. We also evaluated a correlation between the metal ablation thickness and the number of laser shots for the different laser fluences.

The Effects on The Glass Processing by Alumina Addition in Soda Lime Glass (소다석회유리에서 Alumina첨가제에 따른 제병 공정의 영향)

  • Choi, Young-June;Kim, Jong-Ock;Kim, Taik-Nam
    • The Journal of Engineering Research
    • /
    • v.4 no.1
    • /
    • pp.69-85
    • /
    • 2002
  • The chemical composition of bottle glass is consisted of Na2O-CaO-SiO2. However the cullet is mornally used in order to decrease the melting tsmperature. This induce the productivity of bottle and decreases the cost. The addition of plate glass decreases the Al2O3 content and in fluence the stone phenomenon and devitification in botle glass. Tus the Feldspar is added in order to increase the Al2O3 content when plate cullet was added in melting. The Tridymite crystal was observed over 7.5% Al2O3 contents, which shown as white crystal in appearance. It is Supposed that the Wollastonite Would be occurred in more over 7.5% Al2O3. This fad id well consised With the Litertctures.

  • PDF

Scopolamine Production in Suspension Cultures of Tumor Calli from Datura metel L. (흰독말풀(Datura metel L.)종양 캘러스의 현탁배양으로부터 Scopolamine 생성)

  • 이수경;윤길영;김용해;양덕조
    • Korean Journal of Plant Tissue Culture
    • /
    • v.27 no.3
    • /
    • pp.203-211
    • /
    • 2000
  • In this study to produce large-scale scopolamine we were examined in the tumor calli of Datura metel L. induced by Agrobacterium tumefaciens $Ery{101}$. The growth and scopolamine contents of tumor calli were higher under light condition than in dark. The optimum condition of growth and scopolamine production were fluence rate of 16 $\mu$mol $m^{-2}s^{-1}$, spectra of red light region and 16 hour light periods on 50 mL SH liquid medium in 4 weeks culture. To increase of the scopolamine contents in tumor calli, the optimum concentration of nitrogen source were 1.8 mM NH$_4$+ and 40 mM NO$_3$. The optimum elicitor concentration for production of scopolamine were 10 mg/L chitosan and 15 mg/L yeast extract. The effect of precursors were good at the concentration of 0.2 mM tropine and 0.3 mM tropic acid, respectively. In order to increase of growth and scopolamine contents. we induced mutant from Datura metel L. tumor callus. Mutants of tumor calli were obtained by 3 Krad, 4 Krad and 6 Krad of ${60}^Cor-ray$. Among them, 3 Krad tumor callus was excellent on the growth and teratoma induction. The 4 Krad tumor callus was negligible for both growth and teratoma induction. But the 6 Krad tumor callus was the best in growth and teratoma induction. The formation of the mutant calli can be enhanced through hormonal combination of 1 mg/L 2,4-dichlorophenoxyacetic acid and 0.5 mg/L benzyladenine. We carry out selection mutant tumor calli for high content tropane alkaloid and suspension cultures for scopolamine production.

  • PDF

Characterization of Physical Processes and Secondary Particle Generation in Radiation Dose Enhancement for Megavoltage X-rays (MV X선의 방사선 선량 증강 현상에서 물리적 특성과 이차입자의 발생)

  • Hwang, Chulhwan;Kim, JungHoon
    • Journal of the Korean Society of Radiology
    • /
    • v.13 no.5
    • /
    • pp.791-799
    • /
    • 2019
  • We evaluated the physical properties that occur to dose enhancement and changes from secondary particle production resulting from the interaction between enhancement material. Geant4 was used to perform a Monte Carlo simulation, and the medical internal radiation dose (MIRD) head phantom were employed. X-rays of 4, 6, 10, 15, 18, and 25 MV were used. Aurum (Au) and gadolinium (Gd) were applied within the tumor volume at 10, 20, and 30 mg/g, and an experiment using soft tissue exclusively was concomitantly performed for comparison. Also, particle fluence and initial kinetic energy of secondary particle of interaction were measured to calculate equivalent doses using the radiation weight factor. The properties of physical interaction by the radiation enhancement material showed the great increased in photoelectric effect as compared to the compton scattering and pair production, occurred with the highest, in aurum and gadolinium it is shown in common. The photonuclear effect frequency increased as the energy increased, thereby increasing secondary particle production, including alpha particles, protons, and neutrons. During dose enhancement using aurum, a maximum 424.25-fold increase in the equivalent dose due to neutrons was observed. This study was Monte Carlo simulation corresponds to the physical process of energy transmission in dose enhancement. Its results may be used as a basis for future in vivo and in vitro experiments aiming to improve effects of dose enhancement.

Three-dimensional micro photomachining of polymer using DPSSL (Diode Pumped Solid State Laser) with 355 nm wavelength (355nm 파장의 DPSSL을 이용한 폴리머의 3차원 미세 형상 광가공기술)

  • 장원석;신보성;김재구;황경현
    • Korean Journal of Optics and Photonics
    • /
    • v.14 no.3
    • /
    • pp.312-320
    • /
    • 2003
  • The basic mechanistic aspects of the interaction and practical considerations related to polymer ablation were briefly reviewed. Photochemical and photothermal effects, which highly depend on laser wavelength have close correlation with each other. In this study, multi-scanning laser ablation processing of polymer with a DPSS (Diode Pumped Solid State) 3rd harmonic Nd:YVO$_4$ laser (355 nm) was developed to fabricate a three-dimensional micro shape. Polymer fabrication using DPSSL has some advantages compared with the conventional polymer ablation process using KrF and ArF laser with 248 nm and 193 nm wavelength. These advantages include pumping efficiency and low maintenance cost. And this method also makes it possible to fabricate 2D patterns or 3D shapes rapidly and cheaply because CAD/CAM software and precision stages are used without complex projection mask techniques. Photomachinability of polymer is highly influenced by laser wavelength and by the polymer's own chemical structure. So the optical characteristics of polymers for a 355 nm laser source is investigated experimentally and theoretically. The photophysical and photochemical parameters such as laser fluence, focusing position, and ambient gas were considered to reduce the plume effect which re-deposits debris on the surface of substrate. These phenomena affect the surface roughness and even induce delamination around the ablation site. Thus, the process parameters were tuned to optimize for gaining precision surface shape and quality. This maskless direct photomachining technology using DPSSL could be expected to manufacture tile prototype of micro devices and molds for the laser-LIGA process.

Assessment of Radiation Shielding Ability of Printing Materials Using 3D Printing Technology: FDM 3D Printing Technology (3D 프린팅 기술을 이용한 원료에 대한 방사선 차폐능 평가: FDM 방식의 3D 프린팅 기술을 중심으로)

  • Lee, Hongyeon;Kim, Donghyun
    • Journal of the Korean Society of Radiology
    • /
    • v.12 no.7
    • /
    • pp.909-917
    • /
    • 2018
  • 3D printing technology is expected to be an innovative technology of the manufacturing industry during the 4th industrial revolution, and it is being used in various fields including biotechnology and medical field. In this study, we verified the printing materials through Monte Carlo simulation to evaluate the radiation shielding ability of the raw material using this 3D printing technology. In this paper, the printing materials were selected from the raw materials available in a general-purpose FDM-based 3D printer. Simulation of the ICRU phantom and the shielding system was carried out to evaluate the shielding effect by evaluating the particle fluence according to the type and energy of radiation. As a result, the shielding effect tended to decrease gradually with increasing energy in the case of photon beam, and the shielding effect of TPU, PLA, PVA, Nylon and ABS gradually decreased in order of materials. In the case of the neutron beam, the neutron intensity increases at a low thickness of 5 ~ 10 mm. However, the effective shielding effect is shown above a certain thickness. The shielding effect of printing material is gradually increased in the order of Nylon, PVA, ABS, PLA and TPU Respectively.

Triple Junction GAGET2-ID2 Solar Cell Degradation by Solar Proton Events (태양 양성자 이벤트에 의한 삼중 접합 GAGET2-ID2 태양전지 열화)

  • Koo, Ja-Chun;Park, Jung-Eon;Moon, Gun-Woo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.49 no.12
    • /
    • pp.1019-1025
    • /
    • 2021
  • In nearly all space environments, the solar cell degradation is dominated by protons[1]. Even through a GEO orbit lines in the electron radiation belts, the protons emitted from any solar event will still dominate the degradation[1]. Since COMS launch on June 26 2010, the proton events with the fluence of more than approximately 30 times the average level of perennial observations were observed between January 23 - 29 2012 and March 07 - 14 2012[16]. This paper studies the solar cell degradation by solar proton events in January and March 2012 for the open circuit voltage(Voc) of a witness cell and the short circuit current(Isc) of a section connected to a shunt switch. To evaluate the performance of solar cell, the flight data of voltage and current are corrected to the temperature, the Earth-Sun distance and the Sun angle and then compare with the solar cell characteristics at BOL. The Voc voltage dropped about 23.6mV compare after the March 2012 proton events to before the January 2012 proton events. The Voc voltage dropped less than 1% at BOL, which is 2575mV. The Isc current decreased negligible, as expected, in the March 2012 proton events.

Analysis of Photon Spectrum for the use of Added Filters using 3D Printing Materials (3D 프린팅 재료를 이용한 X-선 부가 여과 시 광자 스펙트럼에 대한 분석)

  • Cho, Yong-In;Lee, Sang-Ho
    • Journal of the Korean Society of Radiology
    • /
    • v.16 no.1
    • /
    • pp.15-23
    • /
    • 2022
  • 3D printing technology is being used in various fields such as medicine and biotechnology, and materials containing metal powder are being commercialized through recent material development. Therefore, this study intends to analyze the photon spectrum during added filtration using 3D printing material during diagnostic X-ray examination through simulation. Among the Monte Carlo techniques, MCNPX (ver. 2.5.0) was used. First, the appropriateness of the photon spectrum generated in the simulation was evaluated through SRS-78 and SpekCalc, which are X-ray spectrum generation programs in the diagnostic field. Second, photon spectrum the same thickness of Al and Cu filters were obtained for characterization of 3D printing materials containing metal powder. In addition, the total photon fluence and average energy according to changes in tube voltage were compared and analyzed. As a result, it was analyzed that PLA-Al required about 1.2 ~ 1.4 times the thickness of the existing Al filter, and PLA-Cu required about 1.4 ~ 1.7 times the thickness of the Cu filter to show the same degree of filtration. Based on this study in the future, it is judged that it can be utilized as basic data for manufacturing 3D printing additional filters in medical fields.

Quantitative analysis of hydrogen in thin film by scattering-recoil co-measurement technique (산란-되튐 동시 측정 방법에 의한 박막 중 수소 정량법)

  • Lee, Hwa-Ryun;Eum, Chul Hun;Choi, Han-Woo;Kim, Joonkon
    • Analytical Science and Technology
    • /
    • v.19 no.5
    • /
    • pp.400-406
    • /
    • 2006
  • Hydrogen analysis by elastic recoil detection has been performed utilizing polyimide film as a reference sample of known hydrogen content assuming the soundness of ion beam current integration. However beam current integration at higher incidence angle is not reliable. Scattering yield per unit fluence by current integration which is normalized per unit path length decreases as the sample tilt angle is getting higher. Moreover because beam current integration at high tilt angle is incomplete, hydrogen evaluation is very risky by direct comparison of sequentially collected recoil spectra between reference and target sample. In this study, primary ion beam dose is determined by backscattering spectrum that is collected simultaneously with recoil spectrum instead of ion beam current integration in order to reduce uncertainty arising in the process of current integration and to enhance the reliability of quantitative analysis. Three test samples are selected $-7.6{\mu}m$ polyimide film, hydrogen implanted silicondioxide and Au deposited carbon wafer- and analyzed by two methods and compared.