• 제목/요약/키워드: Flowing Film

검색결과 118건 처리시간 0.033초

A HYBRID METHOD FOR HIGHER-ORDER NONLINEAR DIFFUSION EQUATIONS

  • KIM JUNSEOK;SUR JEANMAN
    • 대한수학회논문집
    • /
    • 제20권1호
    • /
    • pp.179-193
    • /
    • 2005
  • We present results of fully nonlinear time-dependent simulations of a thin liquid film flowing up an inclined plane. Equations of the type $h_t+f_y(h) = -{\in}^3{\nabla}{\cdot}(M(h){\nabla}{\triangle}h)$ arise in the context of thin liquid films driven by a thermal gradient with a counteracting gravitational force, where h = h(x, t) is the fluid film height. A hybrid scheme is constructed for the solution of two-dimensional higher-order nonlinear diffusion equations. Problems in the fluid dynamics of thin films are solved to demonstrate the accuracy and effectiveness of the hybrid scheme.

기판과 열처리 조건에 따른 ZnO 성장 연구 (Thin Film Growth of ZnO dependant upon conditions of Temp. & Sub-streate)

  • 이경주;이동우;노지형;문병무
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2007년도 추계학술대회 논문집
    • /
    • pp.340-341
    • /
    • 2007
  • Thin film of ZnO was deposited on various substrate by Nd:YAG Pulsed Laser Deposition(PLD) with a wavelength of 355nm. Further more, Thin filme of ZnO conducted by various temperature conditions. The surface morphology of the ZnO thin film was investigated by X-Ray Diffraction(XRD) and Atomic Force Microscopy(AFM). Effects of various substrates and Temperature conditions were analyzed. The best properties were obtained on $600^{\circ}C$ with post-deposition annealing at $600^{\circ}C$ in flowing $O_2$ atmosphere for several hours.

  • PDF

Electrical Properties of DC Sputtered Titanium Nitride Films with Different Processing Conditions and Substrates

  • Jin, Yen;Kim, Young-Gu;Kim, Jong-Ho;Kim, Do-Kyung
    • 한국세라믹학회지
    • /
    • 제42권7호
    • /
    • pp.455-460
    • /
    • 2005
  • Deposition of TiN$_{x}$ film was conducted with a DC sputtering technique. The effect of the processing parameters such as substrate temperature, deposition time, working pressure, bias power, and volumetric flowing rate ratio of Ar to N$_{2}$ gas on the resistivity of TiN$_{x}$ film was systematically investigated. Three kinds of substrates, soda-lime glass, (100) Si wafer, and 111m thermally grown (111) SiO$_{2}$ wafer were used to explore the effect of substrate. The phase of TiN$_{x}$ film was analyzed by XRD peak pattern and deposition rate was determined by measuring the thickness of TiNx film through SEM cross-sectional view. Resistance was obtained by 4 point probe method as a function of processing parameters and types of substrates. Finally, optimum condition for synthesizing TiN$_{x}$ film having lowest resistivity was discussed.

Water film covering characteristic on horizontal fuel rod under impinging cooling condition

  • Penghui Zhang;Bowei Wang;Ronghua Chen;G.H. Su;Wenxi Tian;Suizheng Qiu
    • Nuclear Engineering and Technology
    • /
    • 제54권11호
    • /
    • pp.4329-4337
    • /
    • 2022
  • Jet impinging device is designed for decay heat removal on horizontal fuel rods in a low temperature heating reactor. An experimental system with a fuel rod simulator is established and experiments are performed to evaluate water film covering capacity, within 0.0287-0.0444 kg/ms mass flow rate, 0-164.1 kW/m2 heating flux and 13.8-91.4℃ feeding water temperature. An effective method to obtain the film coverage rate by infrared equipment is proposed. Water film flowing patterns are recoded and the film coverage rates at different circumference angles are measured. It is found the film coverage rate decreases with heating flux during single-phase convection, while increases after onset of nucleate boiling. Besides, film coverage rate is found affected by Marangoni effect and film accelerating effect, and surface wetting is significantly facilitated by bubble behavior. Based on the observed phenomenon and physical mechanism, dry-out depth and initial dry-out rate are proposed to evaluate film covering potential on a heating surface. A model to predict film coverage rate is proposed based on the data. The findings would have reliable guide and important implications for further evaluation and design of decay heat removal system of new reactors, and could be helpful for passive containment cooling research.

산업재해에 미치는 대전현상에 관한 연구 (A Study on the Electrification Phenomena Affecting Industrial Disaster)

  • 육재호;안병준
    • 한국안전학회지
    • /
    • 제8권4호
    • /
    • pp.101-106
    • /
    • 1993
  • The streaming current of insulating oil increases with increasing oil velocity and oil amount, A contact potential difference as an energetic state exits in the polymer thin film, both sides of which are contacted by two different metals having different work functions. Accordingly, the potential difference may be a cause for the short circuited transient current flowing through the external circuit. The polymers are electrificated as the electric field Is supplied, and the currents flow with increasing temperature.

  • PDF

R.F 마그네트론 스퍼트링으로 작성된 $TiO_2$박막의 $NO_x$ 감지 특성 ($NO_x$ Sensing Characteristic of $TiO_2$ Thin Film Deposited by R.F Magnetron Sputtering)

  • 고희석;박재윤;박상현
    • 대한전기학회논문지:전기물성ㆍ응용부문C
    • /
    • 제51권12호
    • /
    • pp.567-572
    • /
    • 2002
  • In these days, diesel vehicle or power plant emits $NO_X\; and SO_2$ which cause air pollution like acid-rain, ozone layer destroy and optical smoke, therefore there are many kinds of methods considered for removing them such as SCR, catalyst, plasma process, and plasma-catalyst hybrid process. T$TiO_2$ is commonly used as catalyst to remove $NO_X$ gas because it have very excellent chemical characteristic as photo catalyst. In this paper, $NO_X$ sensing characteristic of $TiO_2$ thin film deposited by R.F Magnetron sputtering is investigated. A finger shaped electrode on $Al_2$O$_3$ substrate is designed and $TiO_2$ is deposited on the electrode by the magnetron sputtering deposition system. Chemical composition of the deposited $TiO_2$ thin film is $TiO_{1.9}$ by RBS analysis. When the UV is irradiated on it with flowing air, capacitance of $TiO_2$ thin film increases, however, when NO gas is put into the system with air, it immediately decreases because of photo chemical reaction. and it monotonously decreases with increasing NO concentration.

Conductivity Change of PEDOT:PSS Film according to the Surface Structuring

  • Yu, Jung-Hoon;Nam, Sang-Hoon;Lee, Jin-Su;Hwang, Ki-Hwan;Seo, Hyeon-Jin;Ju, Dong-Woo;Jeon, So-Hyoun;Yun, Sang-Ho;Boo, Jin-Hyo
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2014년도 제46회 동계 정기학술대회 초록집
    • /
    • pp.248.1-248.1
    • /
    • 2014
  • We present results from an experimental study of conductivity change of poly (3,4-ethylenedioxythiophene) poly(styrenesulfonate) (PEDOT:PSS) film according to the surface structuring. We demonstrate that the patterned structure was enhanced with approximately five times conductivity in comparison with non structure of PEDOT:PSS film. In order to patterning, we have fabricated polystyrene (PS) colloidal monolayer as a template with sphere diameter of 780nm and 1.8um. Structure has honeycomb shape and it provide shorter path way to flowing of electron. Pattern size was controlled by PS diameter and varied by Transformer Coupled Plasma (TCP) etching system. Conductivity was converted from sheet resistance which measured by 4-point prove. Film thickness was derived using Field Emission Scanning Electron Microscopy (FE-SEM) images.

  • PDF

The Kinetics of Anodic Dissolution and Repassivation on 316L Stainless Steel in Borate Buffer Solution Studied by Abrading Electrode Technique

  • Xu, H.S.;Sun, D.B.;Yu, H.Y.;Meng, H.M.
    • Corrosion Science and Technology
    • /
    • 제14권6호
    • /
    • pp.261-266
    • /
    • 2015
  • The capacity of passive metal to repassivate after film damage determines the development of local corrosion and the resistance to corrosion failures. In this work, the repassivation kinetics of 316L stainless steel (316L SS) was investigated in borate buffer solution (pH 9.1) using a novel abrading electrode technique. The repassivation kinetics was analyzed in terms of the current density flowing from freshly bare 316L SS surface as measured by a potentiostatic method. During the early phase of decay (t < 2 s), according to the Avrami kinetics-based film growth model, the transient current was separated into anodic dissolution ($i_{diss}$) and film formation ($i_{film}$) components and analyzed individually. The film reformation rate and thickness were compared according to applied potential. Anodic dissolution initially dominated the repassivation for a short time, and the amount of dissolution increased with increasing applied potential in the passive region. Film growth at higher potentials occurred more rapidly compared to at lower potentials. Increasing the applied potential from 0 $V_{SCE}$ to 0.8 $V_{SCE}$ resulted in a thicker passive film (0.12 to 0.52 nm). If the oxide monolayer covered the entire bare surface (${\theta}=1$), the electric field strength through the thin passive film reached $1.6{\times}10^7V/cm$.

DMPC LB박막의 유전완화현상 (Dielectric Relaxation Phenomena of DMPC LB Thin Film)

  • 최영일;송진원;조수영;이경섭
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2003년도 하계학술대회 논문집 Vol.4 No.2
    • /
    • pp.822-825
    • /
    • 2003
  • Maxwell displacement current (MDC) measurement has been employed to study the dielectric property of Langmuir-films. A method for determining the dielectric relaxation time $\tau$ of floating monolayers on water surface is presented. WC flowing across monolayers is analyzed using a rod-like molecular model. It is revealed that the dielectric relaxation time $\tau$ of monolayers in the isotropic polar orientational phase is determined using a liner relationship between the monolayer compression speed ${\alpha}$ and the molecular area Am. Compression speed ${\alpha}$ was about 30, 40, 50mm/min.

  • PDF

흠진 수직 증발관에서 유동 및 열/물질 전달 해석 (Flow, Heat and Mass Transfer Analysis for Vertical Grooved Tube Evaporator)

  • 박일석;최도형
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 1998년도 추계 학술대회논문집
    • /
    • pp.108-113
    • /
    • 1998
  • A numerical investigation for the flow, heat and mass transfer characteristics of the grooved evaporating tube with the films flowing down on both the inside and outside tube walls has been carried out. The condensation occurs along the outside wall while the evaporation takes place at the free surface of the inside film. The 3-D transport equations for momentum and energy are solved by using the FVM(Finite Volume Method). The free surface shape is tracked by the moving grid technique satisfying the SCL(Space Conservation Rule). Due to the secondary motion of the fluid, the film thins at the crest, while thickens at the valley. The velocity and temperature fields as well as the amounts of the condensed and evaporated mass have been successfully predicted for various operating conditions and groove shapes.

  • PDF