Browse > Article
http://dx.doi.org/10.14773/cst.2015.14.6.261

The Kinetics of Anodic Dissolution and Repassivation on 316L Stainless Steel in Borate Buffer Solution Studied by Abrading Electrode Technique  

Xu, H.S. (National Center for Materials Service Safety (NCMS), University of Science and Technology Beijing)
Sun, D.B. (National Center for Materials Service Safety (NCMS), University of Science and Technology Beijing)
Yu, H.Y. (Institute of Advanced Materials and Technology, University of Science and Technology Beijing)
Meng, H.M. (Institute of Advanced Materials and Technology, University of Science and Technology Beijing)
Publication Information
Corrosion Science and Technology / v.14, no.6, 2015 , pp. 261-266 More about this Journal
Abstract
The capacity of passive metal to repassivate after film damage determines the development of local corrosion and the resistance to corrosion failures. In this work, the repassivation kinetics of 316L stainless steel (316L SS) was investigated in borate buffer solution (pH 9.1) using a novel abrading electrode technique. The repassivation kinetics was analyzed in terms of the current density flowing from freshly bare 316L SS surface as measured by a potentiostatic method. During the early phase of decay (t < 2 s), according to the Avrami kinetics-based film growth model, the transient current was separated into anodic dissolution ($i_{diss}$) and film formation ($i_{film}$) components and analyzed individually. The film reformation rate and thickness were compared according to applied potential. Anodic dissolution initially dominated the repassivation for a short time, and the amount of dissolution increased with increasing applied potential in the passive region. Film growth at higher potentials occurred more rapidly compared to at lower potentials. Increasing the applied potential from 0 $V_{SCE}$ to 0.8 $V_{SCE}$ resulted in a thicker passive film (0.12 to 0.52 nm). If the oxide monolayer covered the entire bare surface (${\theta}=1$), the electric field strength through the thin passive film reached $1.6{\times}10^7V/cm$.
Keywords
repassivation; abrading electrode; anodic dissolution; passive film; high-field model;
Citations & Related Records
연도 인용수 순위
  • Reference
1 A. Kocijan, C. Donik, M. Jenko. Corros. Sci., 49, 2083 (2007).   DOI
2 S. E. Ziemniak, M. Hanson, Corros. Sci., 44, 2209 (2002).   DOI
3 D. Shintani, T. Ishida, H. Izumi, et al., Corros. Sci., 50, 2840 (2008).   DOI
4 H. H. Ge, X. M. Xu, L. Zhao, et al., J. Appl. Electrochem., 41, 519 (2011).   DOI
5 P. Engseth, J. C. Scully, Corros. Sci., 15, 505 (1975).   DOI
6 Jae-Bong Lee, Mater. Chem. Phys., 99, 224 (2006).   DOI
7 P. Engseth, J. C. Scully, Corros. Sci., 15, 505 (1975).   DOI
8 F. M. Song, K. S. Raja, D. A. Jones, Corros. Sci., 48, 285 (2006).   DOI
9 Norio Sato, Morris Cohen, J. Electrochem. Soc., 111, 512 (1964).   DOI
10 Eun-Ae Cho, Chin-Kwan Kim, Joon-Shick Kim, Hyuk-Sang Kwon, Electrochim. Acta, 45, 1933 (2000).   DOI
11 N. Cabrera, N. F. Mott, Rep. Prog. Phys., 12, 163 (1948).
12 G. T. Burstein, P. I. Marshall, Corros. Sci., 23, 125 (1983).   DOI
13 H. S. Kwon, E. A. Cho, and K. A. Yeom, Corrosion, 56, 32 (2000).   DOI
14 R. S. Lillard, G. Vasquez Jr., D. F. Bahr, J. Electrochem. Soc., 158, C194 (2011).   DOI
15 R. M. Fernandez-Domene, E. Blasco-Tamarit, D. M. Garcia-Garcia, J. Garcia-Anton, Electrochim. Acta, 58, 264 (2011).   DOI
16 Lindsey R. Goodman, Preet M. Singh, Corros. Sci., 65, 238 (2012).   DOI
17 M. Gojic, D. Marijan, L. Kosec, Corrosion, 56,839 (2000).   DOI
18 G. T. Burstein, A. J. Davenport, J. Electrochem. Soc., 136, 936 (1989).   DOI
19 M. Avrami, J. Chem. Phys., 7, 1103 (1939).   DOI
20 Z. Feng, X. Cheng, C. Dong, et al., Corros. Sci., 52, 3646 (2010).   DOI
21 L. J. Oblonsky, M. P. Ryan, and H. S. Isaacs, J. Electrochem. Soc., 145, 1922 (1998).   DOI
22 J. Doff, P. E. Archibong, G. Jones, Electrochim. Acta, 56, 3225 (2011).   DOI
23 H. P. Leckie and H. H. Uhlig, J. Electrochem Soc., 113, 1262 (1966).   DOI