• 제목/요약/키워드: Flowability properties

검색결과 224건 처리시간 0.019초

LPBF용 타이타늄 합금 분말의 유변특성에 대한 입자 구형도의 영향 (Effect of Particle Sphericity on the Rheological Properties of Ti-6Al-4V Powders for Laser Powder Bed Fusion Process)

  • 김태윤;강민혁;김재혁;홍재근;유지훈;이제인
    • 한국분말재료학회지
    • /
    • 제29권2호
    • /
    • pp.99-109
    • /
    • 2022
  • Powder flowability is critical in additive manufacturing processes, especially for laser powder bed fusion. Many powder features, such as powder size distribution, particle shape, surface roughness, and chemical composition, simultaneously affect the flow properties of a powder; however, the individual effect of each factor on powder flowability has not been comprehensively evaluated. In this study, the impact of particle shape (sphericity) on the rheological properties of Ti-6Al-4V powder is quantified using an FT4 powder rheometer. Dynamic image analysis is conducted on plasma-atomized (PA) and gas-atomized (GA) powders to evaluate their particle sphericity. PA and GA powders exhibit negligible differences in compressibility and permeability tests, but GA powder shows more cohesive behavior, especially in a dynamic state, because lower particle sphericity facilitates interaction between particles during the powder flow. These results provide guidelines for the manufacturing of advanced metal powders with excellent powder flowability for laser powder bed fusion.

Methyltrichlorosilane 표면 처리를 통한 적층 제조용 AlSi10Mg 분말의 유동 특성 향상 공정 연구 (Improving Flow Property of AlSi10Mg Powder for Additive Manufacturing via Surface Treatment using Methyltrichlorosilane)

  • 박상철;김인영;김영일;김대겸;이기안;오승주;이빈
    • 한국분말재료학회지
    • /
    • 제29권5호
    • /
    • pp.363-369
    • /
    • 2022
  • AlSi10Mg alloys are being actively studied through additive manufacturing for application in the automobile and aerospace industries because of their excellent mechanical properties. To obtain a consistently high quality product through additive manufacturing, studying the flowability and spreadability of the metal powder is necessary. AlSi10Mg powder easily forms an oxide film on the powder surface and has hydrophilic properties, making it vulnerable to moisture. Therefore, in this study, AlSi10Mg powder was hydrophobically modified through silane surface treatment to improve the flowability and spreadability by reducing the effects of moisture. The improved flowability according to the number of silane surface treatments was confirmed using a Carney flowmeter. In addition, to confirm the effects of improved spreadability, the powder prior to surface treatment and that subjected to surface treatment four times were measured and compared using s self-designed recoating tester. The results of this study confirmed the improved flowability and spreadability based on the modified metal powder from hydrophilic to hydrophobic for obtaining a high-quality additive manufacturing product.

초유동 콘크리트의 재료특성에 관한 실험적 연구 (An Experimental Research on the Material Properties of Super Flowing Concrete)

  • 김진근;한상훈;박연동;노재호
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1995년도 가을 학술발표회 논문집
    • /
    • pp.56-62
    • /
    • 1995
  • In this study, the properties of super flowing cocrete containing gly ash were experimentally investigated and compared with those of ordinary concrete. Tests were carried out on five types of super flowing concrete mixes containing fly ash and three types of ordinary concrete mixes without fly ash. Flow test, O-funnel test, box test, Ltype thest and slump test were carried out to obtain the properties for the workability of fresh concrete. Compressime strength, splitting tensile strength, modulus of elasticity. creep and shrinkage test were also obtained as the mechanical properties of hardened concrete. In fresh concrete, it was found that super flowing concrete had excellent workability and flowability compared with ordinary concrete, and the volume ratio of coarse aggregate to concrete volume greatly influenced flowability. Super flowing concrete also had good mechanical properties at both early and late ages with compressive strengths reaching as high as 40 MPa at 28 days. The creep deformation of super flowing concrete investigated were relatively lower than that of ordinary concrete.

  • PDF

Enhancing the Physicochemical Properties of Sodium Iodide-based Root Canal Filling Material with Lanolin Incorporation

  • Hye Shin Park;Jongsoo Kim;Joonhaeng Lee;Jisun Shin;Mi Ran Han;Jongbin Kim;Yujin Kim;Junghwan Lee
    • 대한소아치과학회지
    • /
    • 제51권2호
    • /
    • pp.140-148
    • /
    • 2024
  • This study aimed to enhance the physicochemical properties of sodium iodide-based root filling materials, particularly solubility. In earlier developmental stages, the iodoform-containing paste exhibited high antibacterial efficacy but failed to meet only the solubility requirement among the ISO 6876 criteria. Therefore, this study focused on enhancing the physicochemical properties of the paste under development, particularly centering on reducing its solubility. Four experimental groups were established, including three control group. The previously developed D30 paste was named the Oil 33 group, and the control group was named the Vitapex® group. The Oil 50 group, in which the oil content was increased, and the Oil 45L group, in which lanolin was incorporated. The physical properties (solubility, pH, flowability, and film thickness) of the four pastes were evaluated according to the ISO 6876 standards. No significant differences were observed between the Oil 45L and Vitapex® groups in any of the physical property evaluations. While the Oil 33 and Oil 50 groups met the ISO 6876 standards for flowability and film thickness, the Oil 45L group met all the physical properties. However, reducing the overall oil content may be necessary to enhance the antimicrobial properties. The result of the physicochemical experiments showed that the Oil 45L group with the newly formulated composition and incorporated lanolin exhibited low solubility meeting the ISO 6876 standard of ≤ 3%. We were able to develop a paste with more stable solubility than previous iodide-based root-filling materials. Therefore, the oil content must be further adjusted to improve its antimicrobial properties. If other physical properties also meet the ISO 6876 standards and demonstrate excellent results in cytotoxicity tests, this root filling material could potentially replace existing options.

폴리칼본산계 고성능감수제 사용량이 초고성능 섬유보강 콘크리트의 성질에 미치는 영향 (The Effect of the Amount of Polycarboxylate Superplasticizer on the Properties of Ultra-High Performance Fiber-Reinforced Concrete)

  • 강수태
    • 대한토목학회논문집
    • /
    • 제38권1호
    • /
    • pp.11-18
    • /
    • 2018
  • 이 연구에서는 폴리칼본산계 고성능감수제의 사용량을 1.2%에서 3.0%까지 변화시켰을 때, UHPFRC의 유동성 및 유변특성의 변화, 그리고 강도 변화를 실험을 통해 살펴보았다. 실험결과에 따르면, UHPFRC에서 고성능감수제 사용량 1.8%까지는 사용량 증가에 따라 유동성 개선 효과가 나타났지만, 그 이상에서는 유동성 및 유변특성 개선에 효과가 거의 없는 것으로 나타났다. 고성능감수제 사용량에 따른 압축강도 결과에서는 고성능감수제를 1.8% 사용하였을 때는 1.2% 사용했을 때 비해 고성능감수제 사용량 증가로 인해 강도가 약간 증가하지만, 그 이상의 고성능감수제 사용량에서는 사용량 증가에 따라 강도가 크게 감소하는 경향을 확인할 수 있다. UHPFRC 휨인장강도의 결과도 압축강도와 유사한 증감의 경향을 나타내었다. 휨인장강도와 연관성이 있는 압축강도 및 섬유의 분포특성의 영향을 분리하여 분석한 결과, 많은 양의 고성능감수제를 사용했을 때 압축강도의 영향 이외에 섬유의 분포특성의 영향을 받았음을 확인할 수 있었다. 또한 이러한 영향은 플로우 또는 유변특성 결과와 매우 밀접한 연관성이 있는 것으로 판단된다.

Flowability and Strength Properties of High Flowing Self-Compacting Concrete Using for Tunnel Lining

  • Choi, Yun-Wang;Choi, Wook;Kim, Byoung-Kwon;Jung, Jea-Gwone
    • International Journal of Concrete Structures and Materials
    • /
    • 제2권2호
    • /
    • pp.145-152
    • /
    • 2008
  • So far, there has been no study of the concrete to strengthen in the lining of the tunnels, except for the study of the stability of subgrade and the tunnel construction technologies. In the existing concrete work for tunnel lining, lots of problems happen due to the partial compaction and the material segregation after casting concrete. Accordingly, the aim of this study is to improve economic efficiency and secure durability through the improvement of the construction performance and quality of the concrete for the tunnel lining among the civil structures. Therefore, the compactability and strength properties of the High Flowing Self-Compacting Lining Concrete (HSLC) are evaluated to develop the mixing proportion for design construction technology of HSLC that can overcome the inner cavity due to the reduced flowability and unfilled packing, which has been reported as the problem in the existing lining concrete. The result of the evaluation shows that the ternary mix meets the regulations better than the binary mix. Consequently, it has been judged applicable to the cement for tunnel lining.

복합섬유를 혼입한 초고강도 콘크리트의 폭렬 특성 평가 (Evaluation on Spalling Properties of Ultra High Strength Concrete with Combined Fiber)

  • 손명학;김규용;민충식;이태규;구경모;윤용상
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2011년도 추계 학술논문 발표대회
    • /
    • pp.209-210
    • /
    • 2011
  • This study is aimed to draw a optimum combined fiber mix condition to improve spalling resistance and flowability of ultra high-strength concrete. As a result, W/B 12.5% concrete specimens were prevented spalling with PE0.05+ PP0.1, PE0.05+NY0.1 and W/B 12.5% concrete specimens were prevented spalling with all of combined organic fiber mix condition. But There is no significant influence of steel fiber under 5% volume ratios to prevent spalling. In the scope of this study, we suggest that condition of optimum volume ratio PE0.05+NY0.1 is to improve spalling resistance, flowability and residual compressive strength.

  • PDF

섬유를 혼입한 초고성능콘크리트용 프리믹스결합재의 유동성 및 강도 특성 (Flowability and Strength Properties on Ultra High Performance Concrete Pre-mixed Binders with Fiber)

  • 구경모;황인성;권오봉
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2017년도 춘계 학술논문 발표대회
    • /
    • pp.204-205
    • /
    • 2017
  • In this study, flowability and strength on ultra high performance concrete(UHPC) pre-mixed binders with fiber was investigated. The flow of UHPC with pre-mixed binders was higher than that of seperate mixing conditions. The UHPC using PVA fiber with high specific surface area showed a low flow compared to steel fiber. An pre-mixing method led to improved strength of UHPC and low deviation of specimens due to dispersion effect of each materials.

  • PDF

정제 제형 제조를 위한 포공영 추출물 함유 분말의 제조 및 평가 (Fabrication and Characterization of Taraxacum platycarpum Extract-loaded Particles for Tablet Dosage Form)

  • 진성규
    • 한국분말재료학회지
    • /
    • 제26권3호
    • /
    • pp.225-230
    • /
    • 2019
  • To develop Taraxacum platycarpum extract (TP)-loaded particles for tablet dosage form, various TP-loaded particles composed of TP, dextrin, microcrystalline cellulose (MCC), silicon dioxide, ethanol, and water are prepared using a spray-drying method and fluid-bed-drying method. Their physical properties are evaluated using angle of repose, Hausner ratio, Carr's index, hardness, disintegrant time, and scanning electron microscopy. Optimal TP-loaded particles improve flowability and compressibility. Furthermore, 2% silicon dioxide gives increased flowability and compressibility. The formula of TP-loaded fluid-bed-drying particles at a TP/MCC/silicon-dioxide amount of 5/5/0.2 improves the angle of repose, Hausner ratio, Carr's index, hardness, and disintegrant time as compared with the TP-loaded spray-drying particles. The TP-loaded fluid-bed-drying particles considerably improve flowability and compressibility ($35.10^{\circ}$ vs. $40.3^{\circ}$, 0.97 vs. 1.17, and 18.97% vs. 28.97% for the angle of repose, Hausner ratio, and Carr's index, respectively), hardness (11.34 vs. 4.7 KP), and disintegrant time (7.4 vs. 10.4 min) as compared with the TP-loaded spray-drying particles. Thus, the results suggest that these fluid-bed-drying particles with MCC and silicon dioxide can be used as powerful particles to improve the flowability and compressibility of the TP.

초유동 콘크리트의 재료특성에 관한 실험적 연구 (An Experimental Research on the Material Properties of Super Flowing Concrete)

  • 김진근;한상훈;박연동;노재호
    • 콘크리트학회지
    • /
    • 제8권3호
    • /
    • pp.135-146
    • /
    • 1996
  • 본 연구에서는 5종류의 플라이애쉬를 포함한 초유동 콘크리트와 3종류의 일반 콘크리트에 대한 재료물성을 측정하여 서로 비교.분석하였다. 경화 전의 물성측정을 위해서 슬럼프 실험, 슬럼프 플로우 실험, O형 깔대기 실험, 박스 충전성 실험, L형 충전성 실험을 수행하였고 경화 후의 물성측정을 위해 압축강도 실험, 할렬인장강도 실험, 탄성계수 실험, 크리프 실험, 건조수축 실험 등을 수행하였다. 경화전의 물성측정 실험결과들을 바탕으로 초유동 콘크리트와 일반 콘크리트의 유동성과 충전성을 평가하였고 두 결과를 비교.분석하였다. 또한 경화 후의 물성측정 실험결과를 통하여 초유동 콘크리트의 재료역학적인 특성을 파악하였다. 자기충전성을 만족시킬만한 유동성과 작업성을 가지면서 40 MPa이상의 28일 압축강도를 갖는 양호한 재료역학적인 특성을 나타내는 초유동 콘크리트의 개발 가능성을 보였다. 일반적으로 초유동 콘크리트의 크리프 변형량은 일반 콘크리트보다 상대적으로 작았지만 건조수축은 일반 콘크리트보다 30%이상 컸다.