우리나라 영재교육은 2002년 시작된 이후 이제 교육지원체계가 확립되었고, 양적 측면에서 충분한 성장을 이루었다. 반면에 교육의 질적인 측면에서는 미흡한 점이 있다는 보고가 많다. 즉, 대부분의 영재교육이 선행학습에 의한 단순 지식확대 위주로 이루어진다는 것이다. 영재 교육의 질을 높이기 위해서는 간학문적 원리와 현상을 문제해결에 적용할 수 있는 비판적 사고력 및 창의력 배양 교육이 되어야 한다. 이 연구에서는 통합교육 개념에 근거하여 AND/OR/XOR 등의 기본 논리 연산이 컴퓨터의 세포 역할을 하게 되는 과정을 탐구하는 융합형 교수 학습 자료를 설계하고 개발하였다. 설문 조사 결과 기존의 다른 학습 주제보다 학생들의 만족도(유익성, 이해도, 흥미도)가 크게 높은 것으로 평가되어 설계 취지에 부합된 것으로 나타났다.
The paper presents neural network control techniques for load frequency control of two area power system. Using learning algorithm of error back propagation after learning accept input on the optimal control $e_{i}$, $\dot{e}_{i}$, and $u_{i}$ frequency characteristic and tie-line load flow characteristic investigated dynamic. From result simulation, frequency deviation and tie-line load flow deviation have reduction remarkable.
본 연구에서는 Terra MODIS 위성자료와 Tensorflow를 활용해 1 km 공간 해상도의 토양수분을 산정하는 알고리즘을 개발하고, 국내 관측 자료를 활용해 검증하고자 한다. 토양수분 모의를 위한 입력 자료는 Terra MODIS NDVI(Normalized Difference Vegetation Index)와 LST(Land Surface Temperature), GPM(Global Precipitation Measurement) 강우 자료를 구축하고, 농촌진흥청에서 제공하는 1:25,000 정밀토양도를 기반으로 모의하였다. 여기서, LST와 GPM의 자료는 기상청의 종관기상관측지점의 LST, 강우 자료와 조건부합성(Conditional Merging, CM) 기법을 적용해 결측치를 보간하였고, 모든 위성 자료의 공간해상도를 1 km로 resampling하여 활용하였다. 토양수분 산정 기술은 인공 신경망(Artificial Neural Network) 모형의 딥 러닝(Deep Learning)을 적용, 기계 학습기반의 패턴학습을 사용하였다. 패턴학습에는 Python 라이브러리인 TensorFlow를 사용하였고 학습 자료로는 농촌진흥청 농업기상정보서비스에서 101개 지점의 토양수분 자료(2014 ~ 2016년)를 활용하고, 모의 결과는 2017 ~ 2018년까지의 자료로 검증하고자 한다.
We present a novel deep learning architecture for obtaining a latent image from a single blurry image, which contains dynamic motion blurs through object/camera movements. The proposed architecture consists of two sub-modules: blur image restoration and optical flow estimation. The tasks are highly related in that object/camera movements make cause blurry artifacts, whereas they are estimated through optical flow. The ablation study demonstrates that training multi-task architecture simultaneously improves both tasks compared to handling them separately. Objective and subjective evaluations show that our method outperforms the state-of-the-arts deep learning based techniques.
본 연구는 팀기반학습을 활용한 교과목을 수강한 간호대학생 56명을 대상으로 동료평가와 학업성취도와의 관계에서 수업몰입의 매개효과를 검정하였다. 매개효과 분석은 PROCESS macro Program의 model 4를 부트스트래핑(bootstrapping)을 이용하여 검정하였다. 분석 결과는 첫째, 동료평가, 수업몰입과 학업성취도 간에 유의한 정적 상관이 있는 것으로 나타났다. 둘째, 수업몰입은 동료평가가 학업성취도에 미치는 영향을 부분매개 하는 것으로 확인되었다. 동료평가가 간호대학생을 위한 TBL 과정에서 수업몰입과 팀워크를 촉진하고 궁극적으로 학업성취도를 향상시키는 효과적인 도구가 될 수 있음을 시사하며, 교수자가 학생의 학습성과를 개선할 수 있는 보다 효과적인 교육 전략 및 개입을 개발하는 데 도움이 될 수 있다.
International Journal of Computer Science & Network Security
/
제24권5호
/
pp.205-211
/
2024
The increasing number of botnet attacks incorporating new evasion techniques making it infeasible to completely secure complex computer network system. The botnet infections are likely to be happen, the timely detection and response to these infections helps to stop attackers before any damage is done. The current practice in traditional IP networks require manual intervention to response to any detected malicious infection. This manual response process is more probable to delay and increase the risk of damage. To automate this manual process, this paper proposes to automatically select relevant countermeasures for detected botnet infection. The propose approach uses the concept of flow trace to detect botnet behavior patterns from current and historical network activity. The approach uses the multiclass machine learning based approach to detect and classify the botnet activity into IRC, HTTP, and P2P botnet. This classification helps to calculate the risk score of the detected botnet infection. The relevant countermeasures selected from available pool based on risk score of detected infection.
본 연구는 실시간 온라인 성인간호학 수업에 대한 학습만족도의 영향요인을 확인하여 간호학 교과목의 온라인 강의 설계 및 운영에 기초자료를 제공하고, 새로운 교육 패러다임을 준비하고자 수행되었다. 연구대상자는 일개 대학 간호학과에서 실시간 온라인 성인간호학 수업을 수강하고 있는 3학년 105명을 대상으로, 2020년 6월 20일부터 7월 30일까지 구조화된 온라인 설문지를 통하여 자료수집을 시행하였다. 자료의 분석은 t-test, One-way ANOVA, Scheffe test, Person's correlation coefficients, Hierarchical multiple regression analysis 으로 분석하였다. 연구결과, 대상자의 학습몰입은 3.07점(5점 척도), 수업참여는 3.46점(5점 척도), 학습만족도는 3.88점(5점 척도)으로 나타났다. 학습만족도는 학습몰입(r=.41, p<.001), 수업참여(r=.56, p<.001)와 양의 상관관계가 있는 것으로 분석되었다. 또한, 본 연구 대상자의 학습만족도에 영향을 주는 요인은 수업참여(=.47), 성인간호학 수업에 대한 흥미정도에서 매우 높음(=.21), 높음(=.20) 순이었으며, 설명력은 34%로 분석되었다(F=14.53, p<.001). 따라서 본 연구를 토대로 간호대학생의 학습만족도를 향상시키기 위한 주요요인은 수업참여로, 적극적인 수업참여를 이루어지기 위한 방안 및 교육방법을 개발하여 간호대학생의 학습성과 및 학습목표의 효율적인 달성을 기대해 본다.
본 연구에서는 무료 딥러닝 도구인 R과 텐서플로우에 대한 성능 비교를 수행하였다. 실험에서는 각 도구를 사용하여 6종류의 심층 신경망을 구축하고 10년간의 한국 온도 데이터셋을 사용하여 신경망을 학습시켰다. 구축된 신경망의 입력층 노드 갯수는 10개, 출력층은 5개로 설정 하였으며, 은닉층은 5, 10, 20개로 설정하여 실험을 진행 하였다. 학습 데이터는 2013년 3월 1일부터 2023년 3월 29일까지 서울시 강남구에서 수집된 온도 데이터 3681건을 사용하였다. 성능 비교를 위해, 학습된 신경망을 사용하여, 5일간의 온도를 예측하고 예측된 값과 실제값을 사용하여 평균 제곱근 오차(root mean square error, RMSE)값을 측정하였다. 실험결과, 은닉층이 1개인 경우, R의 학습 오차는 0.04731176이었으며, 텐서플로우는 0.06677193으로 측정되었으며, 은닉층이 2개인 경우에는 R이 0.04782134, 텐서플로 우는 0.05799060로 측정되었다. 전체적으로 R이 더 우수한 성능을 보였다. 우리는 기계학습을 처음 접하는 사용자들에게 두 도구에 대한 정량적 성능 정보를 제공함으로써, 도구 선택에서 발생하는 어려움을 해소하고자 하였다.
KSII Transactions on Internet and Information Systems (TIIS)
/
제9권11호
/
pp.4291-4310
/
2015
This paper investigates the traffic offloading over unlicensed bands for two-tier multi-mode small cell networks. We formulate this problem as a Stackelberg game and apply a hierarchical learning framework to jointly maximize the utilities of both macro base station (MBS) and small base stations (SBSs). During the learning process, the MBS behaves as a leader and the SBSs are followers. A pricing mechanism is adopt by MBS and the price information is broadcasted to all SBSs by MBS firstly, then each SBS competes with other SBSs and takes its best response strategies to appropriately allocate the traffic load in licensed and unlicensed band in the sequel, taking the traffic flow payment charged by MBS into consideration. Then, we present a hierarchical Q-learning algorithm (HQL) to discover the Stackelberg equilibrium. Additionally, if some extra information can be obtained via feedback, we propose an improved hierarchical Q-learning algorithm (IHQL) to speed up the SBSs' learning process. Last but not the least, the convergence performance of the proposed two algorithms is analyzed. Numerical experiments are presented to validate the proposed schemes and show the effectiveness.
Objectives: The purpose of this study was to examine the relationship between educational satisfaction and learning participation of dental hygiene students. Method: A self-reported questionnaire was completed by 344 dental hygiene students in Gyeonggido, Chungcheongdo, and Gyeongsangdo from June 2 to 24, 2014, The questionnaire consisted of general characteristics of the subjects(3 items), choice reason of dental hygiene(7 items), educational satisfaction(22 items), and learning participation(11 items). The educational satisfaction and learning participation were assessed by Likert 5 points scale. Data were analyzed by a statistical package SPSS WIN 18.0. Results: Educational satisfaction included educational environments, teaching, educational content and educational effect. Learning participation included class flow, class participation and class readiness. Gyeongsangdo students tended to have higher score than other areas. The educational effect and teaching effect had more influence on learning participation. Conclusion: To improve the better dental hygiene education, it is important to prepare the effective educational methods and find out the influencing factors for class immersion.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.