• 제목/요약/키워드: Flow-induced Vibration

검색결과 442건 처리시간 0.026초

단일 슬리브 모노폴을 이용한 차량용 와이퍼 안테나의 개발 (Development of Wiper Antenna for Automobile using Single Sleeve Monopole)

  • 최광제
    • 한국자동차공학회논문집
    • /
    • 제9권2호
    • /
    • pp.210-215
    • /
    • 2001
  • The pole antenna of vehicles for AM/FM radio broadcasting receptions has many probems, such as damageable mechanical system and noise etc. It is considered that noise is composed of the structural vibration noise and the air flow induced aerodynamic noise. Also we find out that the setting process of a printed on-glass automobile antenna has many difficulties. Recently, the above mentioned problems can be reduced by employing enhanced wiper antenna which utilizes the windshied wiper arm. The new system is a passive antenna. In this study, experiments for the characteristics of a wiper antenna by measuring the SWR, radiation pattern and received powe have been carried out. The experimental results show that the efficiency of the wiper antenna has better performance than any other antenna.

  • PDF

MODAL CHARACTERISTIC ANALYSIS OF THE APR1400 NUCLEAR REACTOR INTERNALS FOR SEISMIC ANALYSIS

  • Park, Jong-Beom;Choi, Youngin;Lee, Sang-Jeong;Park, No-Cheol;Park, Kyoung-Su;Park, Young-Pil;Park, Chan-Il
    • Nuclear Engineering and Technology
    • /
    • 제46권5호
    • /
    • pp.689-698
    • /
    • 2014
  • Reactor internals are sensitive to dynamic loads such as earthquakes and flow induced vibration. Thus, it is essential to identify the dynamic characteristics to evaluate the seismic integrity of the structures. However, a full-sized system is too large to perform modal experiments, making it difficult to extract data on its modal characteristics. In this research, we constructed a finite element model of the APR1400 reactor internals to identify their modal characteristics. The commercial reactor was selected to reflect the actual boundary conditions. Our FE model was constructed based on scale-similarity analysis and fluid-structure interaction investigations using a fabricated scaled-down model.

초음파 미세혼합기의 해석 및 설계 (Analysis and Design of Ultrasonic Micromixer)

  • 김덕종;허필우;박상진;김재윤;윤의수
    • 유체기계공업학회:학술대회논문집
    • /
    • 유체기계공업학회 2003년도 유체기계 연구개발 발표회 논문집
    • /
    • pp.101-106
    • /
    • 2003
  • In this work, mixing phenomena in the mixing chamber of a ultrasonic micromixer are analyzed through an analytical approach. A simplified 2-dimensional model for the ultrasonic micromixer is presented. Analytical solutions for fluid flow induced by ultrasonic waves are obtained through successive approximations method. From simulation results on thermal diffusion in the mixing chamber, effects of relative location, size, and vibration frequency of a piezoelectric material and aspect ratio of the mixing chamber on mixing performance of the ultrasonic micromixer are investigated. Finally, design guidelines for the ultrasonic micromixer are suggested based on the parametric study.

  • PDF

횡방향 새그를 가진 자정식 현수교의 공탄성 거동(I) -주형의 거동을 중심으로- (Aeroelastic Behaviors of Self-anchored Suspension Bridge with Lateral Sag of Main Cable(I) -Focused on the Behavior of Girder-)

  • 권순덕;장승필
    • 한국강구조학회 논문집
    • /
    • 제9권2호통권31호
    • /
    • pp.259-267
    • /
    • 1997
  • 본 연구에서는 주 케이블에 횡방향 새그를 가진 자정식 현수교의 내풍안정성을 검토하기 위하여 풍동실험을 수행하고, 주형의 거동을 중심으로 그 결과를 분석하였다. 등류와 난류하에서 수행한 부분 모형 실험에서 가장 내풍안정성이 뛰어난 단면을 최종단면으로 선정하고, 전교 모형 실험을 통하여 검증하였다. 또한 차후 연구를 위한 플러터 계수를 측정하여 제시하였다. 교량의 사용성과 피로문제를 검토하기 위하여 버페팅 응답을 조사하였지만, 공학적 관점에서 만족할 만한 수준인 것으로 나타났다. 주형의 항력계수가 상당히 큼에도 불구하고 횡방향 변위가 매우 작게 나타났는데, 이는 주 케이블의 횡방향 새그가 주형의 변위를 구속하기 때문인 것으로 판단된다.

  • PDF

Non-contact Transportation of Flat Panel Substrate by Combined Ultrasonic Acoustic Viscous and Aerostatic Forces

  • Isobe, Hiromi;Fushimi, Masaaki;Ootsuka, Masami;Kyusojin, Akira
    • International Journal of Precision Engineering and Manufacturing
    • /
    • 제8권2호
    • /
    • pp.44-48
    • /
    • 2007
  • In recent years, the size of plane substrates and semiconductor wafers has increased. As conventional contact transportation systems composed of, for example, carrier rollers, belt conveyers, and robot hands carry these longer and wider substrates, the increased weight results in increased potential for fracture. A noncontact transportation system is required to solve this problem. We propose a new noncontact transportation system combining acoustic viscous and aerostatic forces to provide damage-free transport. In this system, substrates are supported by aerostatic force and transported by acoustic viscous streaming induced by traveling wave deformation of a disk-type stator. A ring-type piezoelectric transducer bonded on the stator excites vibration. A stator with a high Q piezoelectric transducer can generate traveling vibrations with amplitude of $3.2{\mu}m$. Prior to constructing a carrying road for substrates, we clarified the basic properties of this technique and stator vibration characteristics experimentally. We constructed the experimental equipment using a rotational disk with a 95-mm diameter. Electric power was 70 W at an input voltage of 200 Vpp. A rotational torque of $8.5\times10^{-5}Nm$ was obtained when clearance between the stator and disk was $120{\mu}m$. Finally, we constructed a noncontact transport apparatus for polycrystalline silicon wafers $(150(W)\times150(L)\times0.3(t))$, producing a carrying speed of 59.2 mm/s at a clearance of 0.3 mm between the stator and wafer. The carrying force when four stators acted on the wafer was $2\times10^{-3}N$. Thus, the new noncontact transportation system was demonstrated to be effective.

동심축 이중관 구조에서 유동기인진동 특성 고찰 (Investigation of FIV Characteristics on a Coaxial Double-tube Structure)

  • 송기남;김용완;박상철
    • 대한기계학회논문집A
    • /
    • 제33권10호
    • /
    • pp.1108-1118
    • /
    • 2009
  • A Very High Temperature Gas Cooled Reactor (VHTR) has been selected as a high energy heat source of the order of $950^{\circ}C$ for nuclear hydrogen generation, which can produce hydrogen from water or natural gas. A primary hot gas duct (HGD) as a coaxial double-tube type cross vessel is a key component connecting a reactor pressure vessel and an intermediate heat exchanger in the VHTR. In this study, a structural sizing methodology for the primary HGD of the VHTR is suggested in order to modulate a flow-induced vibration (FIV). And as an example, a structural sizing of the horizontal HGD with a coaxial double-tube structure was carried out using the suggested method. These activities include a decision of the geometric dimensions, a selection of the material, and an evaluation of the strength of the coaxial double-tube type cross vessel components. Also in order to compare the FIV characteristics of the proposed design cases, a fluid-structure interaction (FSI) analysis was carried out using the ADINA code.

Shape Optimization of the H-shape Spacer Grid Spring Structure

  • Yoon, Kyung-Ho;Kim, Hyung-Kyu;Kang, Heung-Seok;Song, Kee-Nam;Park, Ki-Jong
    • Nuclear Engineering and Technology
    • /
    • 제33권5호
    • /
    • pp.547-555
    • /
    • 2001
  • In pressurized light water reactor fuel assembly, spacer grids support nuclear fuel rods both laterally and vertically. The fuel rods are supported by spacer grid springs and grid dimples that are located in the grid cell. The support system allows for some thermal expansion and imbalance of the fuel rods. The imbalance is absorbed by elastic energy to prevent coolant flow- induced vibration damage. Design requirements are defined and a design process is established. The design process includes mathematical optimization as well as practical design method. The shape of the grid spring is designed to maintain its function during the lifetime of the fuel assembly. A structural optimization method is employed for the shape design. Since the optimization is carried out in the linear range of finite element analysis, the optimum solution is verified by nonlinear analysis. A good design is found and the final design is compared with the initial conceptual design. Commercial codes are utilized for structural analysis and optimization.

  • PDF

핵연료봉 프레팅마멸 시험기 개발 (Development of Fuel Rod Fretting Wear Tester)

  • 김형규;하재욱;윤경호;강흥석;송기남
    • 한국윤활학회:학술대회논문집
    • /
    • 한국윤활학회 2001년도 제34회 추계학술대회 개최
    • /
    • pp.245-251
    • /
    • 2001
  • A fretting wear tester is developed for experimental study on the fuel fretting problem of light water reactor. The feature of the developed tester is it can simulate the existence of gap between spring and fuel rod as well as different contacting force including the just-contact condition (0 N on the contact). Used are a servo-motor, an eccentric cylinder and lever mechanism for driving system. A spacer grid cell is constituted with four strap segments (each segment has a spring). This fretting wear tester can also be used as a fatigue tester of a spacer grid spring with the frequency of more than 10 Hz. It is required to simulate the frequency of the vibrating fuel rod due to flow-induced vibration in a reactor. In fretting wear test, up to two span-length of a fuel cladding tube can be accommodated. A specimen of cladding tube of one span-length is specially designed, which can be extended for two-span test. For .fatigue test, a device for clamping the spring fixture is installed additionally, Presently, the tester is designed for the condition of air environment and room temperature. The variation of the reciprocal distance is measured to check the stability of input force, which will be exerted to the cladding (for fretting wear. test) and the spring (for fatigue test) specimen.

  • PDF

물 분사를 이용한 프로펠러 날개 끝 보오텍스 캐비테이션 제어 (Propeller Tip Vortex Cavitation Control Using Water Injection)

  • 이창섭;한재문;김진학;안병권
    • 대한조선학회논문집
    • /
    • 제47권6호
    • /
    • pp.770-775
    • /
    • 2010
  • As considerable interests in noise emission from the ships have been increased, control of the propeller cavitation generating vibration and radiating noise is looming large. In general, the tip vortex cavitation is first produced in case of full scale propellers, and noise levels rise dramatically from that moment. In order to reduce induced noise from the tip vortex cavitation and hence increase the cavity inception speed, we propose the mass injection method. Water injected from the propeller tip decreases rotating speed of the tip flow, and it restrains growing the tip vortex cavity. Experimental investigations of the model tests carried out in a large cavitation tunnel show that the tip vortex cavitation is effectively controled by water injection from the propeller tip.

증기발생기 전열관 충격 미끄럼 마모 모델 개발 (Development of Impact-sliding wear model for Steam Generator Tubes)

  • 권대엽;신희재;오영진;반치범
    • 한국압력기기공학회 논문집
    • /
    • 제19권2호
    • /
    • pp.61-68
    • /
    • 2023
  • The phenomenon of fretting wear due to the flow-induced vibration in steam generator (SG) tube is a significant degradation mechanism in nuclear power plants. Fretting wear in SG tube is primarily attributed to the friction and impact forces between the SG tube and the tube support structures, experienced during nuclear power plants operation. While the Archard model has generally been used for the prediction of fretting wear in SG tube, it is limited by its linear nature. In this study, we introduced an "Impact Shear Work-rate" (ISW) model, which takes into account the combined effects of impact and sliding. The ISW model was evaluated using existing experimental data on fretting wear in SG tube and was compared against the Archard model. The prediction results using the ISW model were more accurate than those using the Archard model, particularly for impact forces.