• Title/Summary/Keyword: Flow velocity

Search Result 7,021, Processing Time 0.035 seconds

Flow Velocity and Mass Measurement Sensor of Constant Temperature Type (정온도형 유속 및 유량 측정센서)

  • Park, Se-Kwang;Kim, Hyoung-Pyo
    • Journal of Sensor Science and Technology
    • /
    • v.1 no.1
    • /
    • pp.35-41
    • /
    • 1992
  • A constant temperature type of flow sensor using a solid state micromachining technology was developed for measuring the velocity of gas or liquid. It was designed to detect only the heat convection related to flow velocity. Other heat transfer terms and common mode interferences are canceled by differentiating both reference and exposed flow sensor. It employs the principle that the change of current through the sensing element can be used to measure the flow velocity. An experimental study of the behavior on this flow sensor was performed in a narrow tube(diameter : 8mm) for city water. The relation between power consumption of the flow sensor and square-root of flow velocity is almost linear in the low velocity range(0-200 cm/sec).

  • PDF

Study on Flow Velocity Control of a Multiple Hydrofoil Duct via Flow Visualization Techniques (유동가시화를 통한 다중 수중익 덕트 내 유속조절에 대한 연구)

  • Kim, Jihoon;Sitorus, Patar Ebenezer;Won, Boreum;Le, Tuyen Quang;Ko, Jin Hwan
    • Journal of the Korean Society of Visualization
    • /
    • v.14 no.2
    • /
    • pp.12-17
    • /
    • 2016
  • In this work, we investigate the flow velocity controllability of a diffuser-type multiple hydrofoil duct by experimental and numerical flow visualization approaches. The flow velocity controllability is analyzed by changing the angle of the hydrofoil near the outlet, which is the diffuser, while the incoming flow velocity is 0.6 m/s in the experiment. When the diffuser angle is changed from 0 to 7.5 degree, the maximum velocity inside the duct is varied from 1.35 m/s to 1.52 m/s. Also, it is shown from the numerical analysis that the maximum velocity is varied from 1.09 m/s to 1.17 m/s in the same condition. Thus, the aspect of the acceleration in the duct due to the increase of the diffuser angle is similar between the both approaches. Therefore, the multiple hydrofoil duct can be used to control the flow speed inside the duct for continuously extracting power close to a rated capacity.

Analysis of Flow Velocity Change in Blade Installed Shroud System for Tidal Current Generation (블레이드가 설치된 조류발전용 쉬라우드 시스템 내 유속 변화 분석)

  • Lee, Uk Jae;Han, Seok Jong;Jeong, Shin Taek;Lee, Sang Ho
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.31 no.1
    • /
    • pp.9-16
    • /
    • 2019
  • Flow velocity changes in the shroud system for tidal current power generation due to experimental flow velocities and blade geometry changes were analyzed by hydraulic experiment and numerical simulation. Through the hydraulic experiment, flow velocities at inlet of shroud system and RPM according to blade geometry were measured, and numerical simulation was used to analyze flow velocity changes in shroud. When the experimental flow velocity was increased by about 28% and the shape of the airfoil was applied, the measured flow velocity at the shroud inlet tended to increase by up to about 56%. On the other hand, when airfoil-shaped blades were installed, the flow velocity at the inlet tended to increase by up to 14% compared to conventional blades, and RPM was also the highest at the same conditions. The hydraulic experiment and numerical simulation results showed an error of about 13%, and the trends of the flow velocity changes in each result are similar. Numerical simulation of the flow velocity changes in the shroud showed that the flow velocity tended to increase 1.7 times at the front of the blade compared to the inlet. The results of the flow velocity change analysis in the shroud system obtained from this study will provide the basic data necessary for the development of efficient shroud system for tidal current power generation.

Frequency Characteristics of Fluctuating Velocity According to Flow Rates in a Tip Leakage Vortex and a Wake Flow in an Axial Flow Fan (축류 홴의 익단누설와류 및 후류에서 유량에 따른 변동속도의 주파수 특성)

  • Jang, Choon-Man;Kim, Kwang-Yong;Fukano, Tohru
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.28 no.2
    • /
    • pp.181-188
    • /
    • 2004
  • The frequency characteristics in an axial flow fan operating at a design and three off-design operating conditions have been investigated by measuring the velocity fluctuation of a tip leakage vortex and a wake flow. Two hot-wire probe sensors rotating with the fan rotor. a fixed and a moving ones, were introduced to obtain a cross-correlation coefficient between two sensors as well as the fluctuating velocity. The results show that the spectral peaks due to the fluctuating velocity near the rotor tip are mainly observed in the reverse flow region of higher flow rates than those in the peak pressure operating condition. However, no peak frequency presents near the rotor tip for near stall condition. Detailed wake flow just downstream of the rotor blade was also measured by the rotating hot-wire sensor. The peak frequency of a high velocity fluctuation due to Karman vortex shedding in the wake region is mainly observed at the higher flow rate condition than that in the design point.

The Development of Flow-Meter System Using the Granule Flow Density And Velocity (분체 밀도와 속도를 이용한 유량검출기의 개발)

  • Gim, Jae-Hyeon;Hwang, Keon-Ho;Lee, Yong-Sik;Jeong, Sung-Won
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.23 no.5
    • /
    • pp.9-17
    • /
    • 2009
  • In this paper, we describe a flow meter system for pulverized coal developed for the pulverizer-burner system of a boiler or blast furnace, which uses the density and the velocity of the granule flow. The granule flow density is measured by a sensor that detects the capacitance from the electrode on the surface of the piping system. The velocity of granule flow can be calculated using the distance between two pairs of built-in sensors in the flow direction, the time obtained from the sampling cycle using the correlation method between two waveforms of the sensors. The flow rate is calculated from the density and velocity of the granule flow. The reliability and accuracy of the flow meter system has been verified by comparing the data with the weight measured from a load-cell.

On the Optimum Modelization for a Spray Column Direct Contact Heat Exchanger (분사칼럼식 직접접촉 열교환기의 최적 모델링을 위한 연구)

  • Yoon, S.M.;Kang, Y.H.;Kim, C.B.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.3 no.1
    • /
    • pp.1-10
    • /
    • 1991
  • The purpose of this study is to lay groundwork for a complete analysis of two component flow by analyzing a single component flow made of continuous fluid without dispersed phase. In order to achieve uniform velocity distributions which are desirable in designing an optimum spray column direct contact heat exchanger, the influence of injection nozzle orientation has been investigated for axial and radial injections. The results that radial injection ensures more uniform velocity distributions compared to the axial case. The flow characteristics in a spray column have been investigated with various L/D values and inlet velocities, the most uniform internal velocity distributions have been obtained for the case of L/D=10 and 0.1m/sec. In the present investigation, it is shown that radial injection method for the continuous flow is advantageous in obtaining desirable uniform velocity distributions in a spray column. It is also found that as the value of L/D increases and the inlet velocity decreases, the flow improves to be better uniform velocity distributions.

  • PDF

Mean Flow Velocity Measurement Using the Sound Field Reconstruction (음장 재구성에 의한 관내 평균유속 측정)

  • Kim, Kun-Soon;Cheung, Wan-Sup;Kwon, Hyu-Sang;Park, Kyung-Am;Paik, Jong-Seung;Yoo, Seong-Yeon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.24 no.7
    • /
    • pp.924-929
    • /
    • 2000
  • This paper addresses a new technique of measuring the mean flow velocity over the cross sectional area of the pipe using sound field reconstruction. When fluid flows in the pipe and two plane waves propagate oppositely through the medium, the flow velocity causes the change of wave number of the plane waves. The wave number of the positive going plane wave decreases and that of negative going one increases in comparison to static medium in the pipe. Theoretical backgrounds of this method are introduced in detail and the measurement of mean flow velocity using the sound field reconstruction is not affected by velocity profile upstream of microphones.

The Technology to Control the Flow Velocity of Non-Symmetric Rib-Web Shape Hot Forged Part (비대칭 리브-웨브형상 열간 단조품의 변형 속도 제어 기술)

  • 이영선;이정환
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.1
    • /
    • pp.209-215
    • /
    • 2000
  • Precision forging technology that can control flow velocity of workpiece have been developed to minimize the amounts of machining. To get the uniform rib length, flow velocity distribution is needed to be estimated and controlled. Computer-aided design is known for very effective to estimate the deformation behavior and design the die for controlling the flow velocity. In this study, die design to control the deformation velocity are investigated using the DEFORM-2D about rib-web shape parts. Also we can get uniform rib length by enforcing the back pressure at end section of rib. The applied load of back pressure farming is lower than that of conventional forging. These results are analysed and confirmed by the experiment.

  • PDF

Fluidelastic instability of a curved tube array in single phase cross flow

  • Kang-Hee Lee;Heung-Seok Kang;Du-Ho Hong;Jong-In Kim
    • Nuclear Engineering and Technology
    • /
    • v.55 no.3
    • /
    • pp.1118-1124
    • /
    • 2023
  • Experimental study on the fluidelastic instability (FEI) of a curved tube bundle in single phase downward cross flow is investigated for the design qualification and analysis input preparation of helical coiled steam generator tubing. A 6×9 normal square curved tube array with equal and different vertical/horizontal pitch-to-diameter ratio was under-tested up to 6 m/s in term of gap flow velocity to measure the critical velocity for FEI. The critical velocity for FEI was measured at the turning point from the vibration amplitude plot along the gap flow velocity. Our test results were compared with straight tube results and published data in the design guideline. The applicability of the current design guidelines to a curved tube bundle is also assessed. We found that introducing frequency difference in a curved tube array increases the critical velocity for fluidelastic instability.

A study on velocity profiles and inlet length of developing transitional pulsating flows in the entrance region of a square duct (정4각 덕트 입구영역에서 천이파동유동의 속도분포와 입구길이에 관한 연구)

  • 유영태;모양유;홍성삼
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.15 no.2
    • /
    • pp.92-104
    • /
    • 1993
  • In the present study, the velocity profiles and entrance length of developing transitional pulsating flows are investigated both analytically and experimentally in the entrance region of a square duct. The systems of conservation equations for transitional pulsating flows in a square duct are solved analytically by linearizing the non-linear convective terms. Analytical solutions are obtained in the form of infinite series for velocity pofiles. The experimental study for the air flow in a square duct(40mm*40mm*4000mm) is carried out to measure velocity profiles and other parameters by using a hot-wire anemometer with a data acquisition and processing system. The distribution of velocity profiles( $u_{ps}$ / $u_{m,ta}$) in the decelerating period is higher than in the accelerating period. The distribution of the axial component of the axial component of velocity in the transitional flow is nearly uniform in the central region of the duct, and decrease rapidly near the wall. The entrance length correlation of the transitional pulsating flows in a square duct is obtained to be $L_{e}$/ $D_{h}$=0.83 $A_{1}$R $e_{ta}$ /(.omega. sup+1)$^{2}$TEX>

  • PDF