• 제목/요약/키워드: Flow oscillation

검색결과 510건 처리시간 0.023초

Dynamic Characteristics of an Unsteady Flow Through a Vortex Tube

  • Kim, Chang-Soo;Sohn, Chang-Hyun
    • Journal of Mechanical Science and Technology
    • /
    • 제20권12호
    • /
    • pp.2209-2217
    • /
    • 2006
  • Dynamic flow characteristics of a counter-flow vortex tube is investigated using hot-wire and piezoelectric transducer (PZT) measurements. The experimental study is conducted over a range of cold air outlet ratios (Y=0.3, 0.5, 0.7, and 1.0) and inlet pressure 0.15 MPa. Temperatures are measured at the cold air outlet and along the vortex tube wall. Hot-wire is located at cold outlet and PZT is installed at inner vortex tube by mounting at throttle valve. The cold outlet temperature results show that the swirl flow of vortex tube is not axisymmetric. The hot-wire and PZT results show that there exist two distinct kinds of frequency, low frequency periodic fluctuations and high frequency periodic fluctuations. It is found that the low frequency fluctuation is consistent with the Helmholtz frequency and the high frequency fluctuation is strongly related with precession oscillation.

Experimental Study and Numerical Simulation of Cavity Oscillation in a Diffuser with Swirling Flow

  • Chen, Chang-Kun;Nicolet, Christophe;Yonezawa, Koichi;Farhat, Mohamed;Avellan, Francois;Miyazawa, Kazuyoshi;Tsujimoto, Yoshinobu
    • International Journal of Fluid Machinery and Systems
    • /
    • 제3권1호
    • /
    • pp.80-90
    • /
    • 2010
  • The cavity oscillation with swirling flow in hydraulic power generating systems was studied by a simple experiment and numerical simulation. Several types of fluctuation were observed in the experiment, including the cavitation surge caused by the diffuser effect and the vortex precession by the swirling flow. Both cavitation surge and vortex precession were simulated by CFD. Detailed flow structure was examined through flow visualization and CFD.

3차원 교차 주름판 내 유동의 불안정성 및 자활 진동 (Instability and Self-Sustained Oscillation of the Flow between Three-Dimensionally Cross-corrugated Plates)

  • 이승엽;최영돈
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2002년도 학술대회지
    • /
    • pp.679-682
    • /
    • 2002
  • Energy dissipations in a general PHE flow are the compounded effects of the piled corrugate geometries and its wall pressure and temperature distributions. In addition, although the exchangers are substantial pieces of engineering equipment, they are composed of a very large number of nominally identical and small geometrical elements. In the present numerical study, the three-dimensionally complicated energy dissipation fields and those wall-shape-induced flow destabilization are investigated in the cross-corrugated passages, which result in high energy transports with comparatively low pressure drop. We revealed the critical conditions as $Re=157.3 for the wall-shape-induced flow destabilization in a general PHE element by initial value method, or shooting method, and compare its value to that of analytical solution of plane Poiseille flow, two-dimensional grooved flow and so on. We also observed the detailed variation of flow field and energy transportation with changes in time and flow variables such as Reynolds number. Lastly, we considered the flow natural frequency, or Strouhal number, with variation of hydrodynamic conditions for the best use of active control, such as forced mass flow rate pulsative flow, to enhance energy transportation.

  • PDF

바탕회전하에 회전요동하는 직사각형용기 내의 유동에 관한 연구 (Study on Fluid Flows in a Rectangular Container Subjected to a Background Rotation and a Rotational Oscillation)

  • 박재현;서용권
    • 한국해양공학회:학술대회논문집
    • /
    • 한국해양공학회 2002년도 춘계학술대회 논문집
    • /
    • pp.215-219
    • /
    • 2002
  • In this study, we show the numerical and the experimental results for fluid motions inside a rectangular container subjected to a background rotation added by a rotational oscillation. In the numerical computation, we used a parallel computer system of PC-cluster type. Attention is given to dependence of the flow patterns on the parameter change. It shows that the flow becomes in a periodic state at low Reynolds numbers and undergoes a transition to a chaotic motion at high Reynolds numbers. It also shows that the fluid motion tends to be depth-independent at ${\epsilon}$ up to 0.3 for Re lower than 5235.

  • PDF

진동하는 구를 지 나는 유동의 특성 (Characteristics of Flow p ast an Oscillating Sphere)

  • 이대성;윤현식;하만영
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2008년도 춘계학술대회논문집
    • /
    • pp.284-287
    • /
    • 2008
  • Flow over a sphere under forced oscillation at Re=300 is simulated for various frequency ratios which are defined as excitation frequency over natural frequency of stationary sphere. The results of oscillating sphere are compared with those of stationary sphere and an oscillating cylinder. Detailed vortical structures, hydrodynamic forces and frequencies of the wake are prescribed as a function of frequency ratio. For oscillating sphere, planar symmetry of the wake is kept and two nearly symmetric hair pin vortices are induced by oscillation for one period of oscillation when the frequency ratio is bigger than 0.5. Modulation phenomenon which can be found in an oscillating cylinder were not seen for an oscillating sphere.

  • PDF

Characteristics of Self-excited Combustion Oscillation and Combustion Control by Forced Pulsating Mixture Supply

  • Yang, Young-Joon;Fumiteru Akamatsu;Masashi Katsuki;Lee, Chi-Woo
    • Journal of Mechanical Science and Technology
    • /
    • 제17권11호
    • /
    • pp.1820-1831
    • /
    • 2003
  • Characteristics of self-excited combustion oscillation are experimentally studied using confined premixed flames stabilized by a rearward-facing step. A new idea to suppress combustion oscillation was applied to the flames. The characteristics of unsteady combustion were examined, which is driven by forced pulsating mixture supply that can modulate its amplitude and frequency. The self-excited combustion oscillation having weaker flow velocity fluctuation intensity than that of the forced pulsating supply can be suppressed by the method. The effects of the forced pulsation amplitude and frequency on controlling self-excited combustion oscillations were also investigated comparing with the steady mixture supply. The unsteady combustion used in this experiment plays an important role in controlling self-excited combustion oscillations, and it also exhibits desirable performances, from a practical point of view, such as high combustion load and reduced pollutant emissions of nitric oxide.

신고유치 해석 프로그램을 이용한 직류계통 축비틀림 진동 댐핑 제어기 설계 (Design of HVDC System 550 Damping Controller Using Novel Eigenvalue Analysis Program)

  • 김동준;남해곤;문영환;김용구
    • 대한전기학회논문지:전력기술부문A
    • /
    • 제53권3호
    • /
    • pp.140-151
    • /
    • 2004
  • This paper presents the HVDC system modelling for analysis of subsynchronous oscillation and the design of the subsynchronous oscillation damping controller in HVDC system with the aid of novel eigenvalue analysis program. The HVDC system models include both the steady-state model for power flow calculation and the dynamic model for constructing the state matrix. The design procedures of the subsynchronous oscillation damping controller (SODC), which is integrated with PI controller at rectifier, consist of three steps:1) to identify the dominant torsional oscillation mode in the AC/DC system;2) to determine the parameters of the SODC for compensating the phase lagging due to the rectifier controller;3) to validate the control parameters and to determine the appropriate gain using a time-domain simulation program. The proposed design method has been tested against two AC/DC systems for validation.

3-성분 종입자법으로 제조한 저전압 ZnO 바리스터의 발진 전도특성 (The oscillation conduction characteristics of ZnO varistor fabricated with 3-composition seed grain method)

  • 장경욱;김영천;황석영;김용주;이준웅
    • E2M - 전기 전자와 첨단 소재
    • /
    • 제9권10호
    • /
    • pp.1019-1026
    • /
    • 1996
  • In this study, we may be presented the carrier oscillation properties for the low-voltage varistor fabricated by a new method of three composition seed grain, in order to analyze the behavior of carriers at the its equivalent circuit model. The oscillation phenomena of carriers appeared from current-voltage characteristics under knee voltage is shown by the transient flow of nontrapped carriers group in the trap level of intergranular layer, surface state and/or depletion layer. In particularly, current oscillation phenomena is hardly shown in the high electric field. It is that the injected carriers from both electrodes are directly from the conduction band of forward biased ZnO grain through the intergranular layer into the reverse biased ZnO grain, because the trap level in the electric field above the knee voltage is mostly filled.

  • PDF

주기적으로 회전진동하는 원주 후류의 공진특성에 관한 연구 (Lock-on Characteristics of Wake Behind a Rotationally Oscillating Circular Cylinder)

  • 이정엽;이상준
    • 대한기계학회논문집B
    • /
    • 제29권8호
    • /
    • pp.895-902
    • /
    • 2005
  • Lock-on characteristics of flow around a circular cylinder oscillating rotationally with a relatively high forcing frequency have been investigated experimentally. Dominant governing parameters are Reynolds number (Re), angular amplitude of oscillation (${\theta}_A$), and frequency ratio $F_R=f_f/f_n,\;where\;f_f$ is a forcing frequency and $f_n$ is a natural frequency of vortex shedding. Experiments were carried out under the conditions of $Re=4.14{\times}10^3,\;{\pi}/90{\leq}{\theta_A}{\leq}{\pi}/3,\;and\;F_R=1.0$. The effect of this active flow control technique on the lock-on flow characteristics of the cylinder wake was evaluated with wake velocity measurements and spectral analysis of hot-wire signals. The rotational oscillation modifies the flow structure of near wake significantly. The lock-on phenomenon always occurs at $F_R=1.0$, regardless of the angular amplitude ${\theta}_A$. In addition, when the angular amplitude is less than a certain value, the lock-on characteristics appear only at $F_R=1.0$,. The range of lock-on phenomena expands and vortex formation length is decreased, as the angular amplitude increases. The rotational oscillation create a small-scale vortex structure in the region just near the cylinder surface. At ${\theta}_A=60^{\circ}$, the drag coefficient was reduced about $43.7\%$ at maximum.

연소실 압력변동에 따른 화염 진동현상의 관찰 (Observation of flame oscillation with changing combustor pressure)

  • 김종률;최경민;김덕줄
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2005년도 제31회 KOSCO SYMPOSIUM 논문집
    • /
    • pp.275-280
    • /
    • 2005
  • At previous study, nitrogen oxide emission was decreased with decreasing pressure index. This tendency was explained by the flame oscillation with changing combustor pressure. In this study, the characteristics of flame oscillation with changing combustor pressure were investigated. It can be found that flame length is extended and flame width is narrowed by decreasing combustor pressure. It can be observed that pilot flame and the surrounding air converge on the inner flame in the $P^{\ast}{\geqq}1$ conditions and that surrounding air and flow pattern was widely dispersed in the $P^{\ast}<1$ conditions. In the respect of average flame length, low fluctuation was shown in the $P^{\ast}<1$ conditions. On the other hands, large fluctuation was shown in the $P^{\ast}<1$ conditions. Flame oscillation are observed from $P^{\ast}=$ 0.98 in the condition of $P^{\ast}<1$ and the amplitude of flame oscillation becomes larger when $P^{\ast}$ is lowered. These results demonstrate that low NOx phenomenon was caused by flame oscillation with changing combustor pressure.

  • PDF