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Abstract

Energy dissipations in a general PHE flow are the compounded effects of the piled corrugate geometries and its wall pressure
and temperature distributions. In addition, although the exchangers are substantial pieces of engineering equipment, they are
composed of a very large number of nominally identical and small geometrical elements. In the present numerical study, the
three-dimensionally complicated energy dissipation fields and those wall-shape-induced flow destabilization are investigated in the
cross-corrugated passages, which result in high energy transports with comparatively low pressure drop. We revealed the critical
conditions as Re=157.3 for the wall-shape-induced flow destabilization in a general PHE element by initial value method, or
shooting method, and compare its value to that of analytical solution of plane Poiseille flow, two-dimensional grooved flow and
so on. We also observed the detailed variation of flow field and energy transportation with changes in time and flow variables
such as Reynolds number. Lastly, we considered the flow natural frequency, or Strouhal number, with variation of
fiydrodynamic conditions for the best use of active control, such as forced mass flow rate pulsative flow, to enhance energy
transportation,

1. INTRODUCTION instability analysis and the most unstable modes are two-dimensional
Tollmien-Schlichting waves. It means that these traveling disturbance
modes naturally decay with time for Re< Re and so the flow

through parallel flat plates has its inherent limitation for the

Plate heat exchangers have been the subject of increasing research
due to the attractive possibility of improving the performance of

energy transport, thus reducing volume and cost, by a relatively
simple rational re-design of the basic heat transfer elements. In
addition, the corrugated geometry of PHE connotes the positive
possibility of the enhancement of energy transport through wall-shape
induced flow destabilization.

However, the study on the unsteadiness and its application to the
energy transport enhancement of PHE has not been performed yet
due to the difficulty in the analysis of complicated PHE channel
flow field and the previous studies on the flow instability and its
affirmative applications are almost restricted within simple flow
conditions, such as two-dimensional grooved or furrowed
geometries,[1]{2][3]  axisymmetric wavy channel flows[4] or
three-dimensional but geometirically symmetric condition{5]. The
practical flow and heat transfer boundary conditions of high
performance heat exchanger such as PHE, however, are not so
simple but three-dimensionally multifarious.

In a plane Poiseille flow, the critical Reynolds number for
instability was revealed theoretically as 5772 by the viscous
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enhancement of energy transport in general working condition.
Wall boundary shapes, however, critically influence the time
variance of the flow field as well as space variance. Especially,
grooved geometry advances drastically the critical working point for
the destabilization and grows flow fluctuation. Starting interest in
destabilized flows grew from the study on resonant heat transfer
enhancement in two-dimensionally grooved channels.[1}{6] These
studies revealed the resonant excitation of the least stable
Tollmien-Schilichting modes by actively modulating the flow rate at
frequencies close to the natural frequency of these modes, even at
moderately low Reynolds number. In addition, Greiner et al.[2]
insisted that energy transport enhancement by the passive shear
destabilization using the grooved channel geometry is more reliable
in practical systems. By the way, in either active or passive
systems for the enhancement of the energy transportation and
performance in heat exchanger, it is very important to disclose the
geometry-induced  destabilization and more effective operating
conditions.

In the present study, we will investigate the instability of the
mass-flowrate-steadily forced flow in the cross-corrugated channel
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Fig. 1 The geometrical features of chevron plate: (a) typical
chevron plate, (b) stack arrangements and sections through
chevron troughs.

element, which represents the geometry and hydrodynamic
characteristics of general PHE, and its influence on the enhancement
of energy transport. For this purpose, we will reveal first the critical
conditions for the wali-shape-induced flow destabilization of three
dimensionally cross-corrugated channel geometry by initial value
method, or shooting method, and compare its value to that of
analytical solution of plane Poiseille flow. And then we will
observe the detailed variation of flow field and energy transportation
with changes in time and flow variables such as Reynolds number.
Lastly, we consider the natural frequency, or Strouhal number of
flow with variation of hydrodynamic conditions for the best use of
active control, such as the mass-flowrate-pulsative flow, to enhance
energy transportation.

2. NUMERICAL METHOD

2.1 Geometry and Computational Grid of the Cross-Corrugated
PHE Element

Of the many different types of plate corrugations available[7], the
most commonly used chevron plate is illustrated in Fig. 1. Real
exchangers are composed of a large number of flow passages.
However, due to the modular nature of the heat exchange matrix, it
is possible to think of it as composed of a very large number
(~10°) of nominally identical, geometrically small elements
repeating themselves periodically.

For the crossed-corrugated design, the element of cross-corrugated
PHE matrix shown in Fig. 2 can be identified by the following
parameters; corrugation inclination angle, 3, its pitch, P, external

Fig. 2 Computational domain
and coordinate system.

Fig. 3 Cross section normal to the
upper plane corrugation.
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Table 1 Geometry parameters,

Parameters Value
Plate thickness, s 0.5mm
Corrugation angle, 23 126deg.
Pitch, P 10.75mm
Height, # 3.5mm
Internal height, H,= H—s 3.0mm
Hydraulic diameter, D, = 4P*H,/A sin (23) 5.125mm
P/H 3.07
P/H, 3.58

height, #, and wall thickness, s, in Fig3.  Other relevant
geometrical quantities can be correlated from these as summarized
in Table 1. These correlations are based on the simplifying
assumption of perfectly sinusoidal corrugation of the plate center
line.

The ratio of corrugation pitch P and corrugation depth H; to
hydraulic diameter D,, and the corrugation inclination angle 3
parameterize the small-scale channel shape; a unmitary cell of the
PHE channel. In addition, seven representative points were selected
to investigate the unsteadiness of flow field The computational
domain for flow field is fulfilled with tetrahedral control volumes to
avoid singularities caused by sine-wave corrugations of a
three-dimensional array of hexahedral control volumes.  Fig. 4
shows the computational grids for a PHE element. The number of
grid cells is more than 170,000 and that of grid faces is more than
400,000. In order to calculate a spatially periodic flow field with a
specified mass flow rate derivative, we first create two pairs of
inlet-outlet grids with translationally periodic boundaries that are
parallel to each other and equal in size.

2.2 Boundary and Initial Condition

In PHE flow, the geometry varies in a repeating manner along
the direction of the flow, leading to a periodic fully-developed flow
regime in which the flow pattern repeats in successive cycles. As
like examples of streamwise-periodic flows include fully-developed
flow in pipes and ducts, these periodic conditions are achieved after
a sufficient entrance length, which depends on the flow Reynolds
number and geometric configuration. However, Stasiek et al[8]
revealed the entrance and plate end effects are limited and have
died out before the fifth PHE element layer from entrance and wall
boundaries and thus the most flow condition in PHE elements can
be legitimately considered as representative of fully developed
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Fig. 4 Computational grid for a cross-corrugated PHE element.



conditions.

The problem is clarified for a initial value problem in which
numerical solution is converged first and then the disturbance of
5% more mass flow rate is inflicted on the fully-developed steady
state solution at ¢= 0. Therefore, the mean perturbation velocity
at t=0, u'(0), is approximately 0.057 (0).

3. RESULTS AND DISCUSSION

In the linearly stable condition, Re< Re,, although the flow
may have the oscillation frequency(internal wave frequency) of the
corresponding unstable mode, no matter how strong disturbance
may be, it should decay with time and so it is very inefficient
condition for the energy transport such as heat transfer in heat
exchanger.  Therefore, it is important to determine the critical
Reynolds number, Re.=Re,, for the onset of instability and to
quantify the time-variation of disturbances.

As the instantaneous growth rate of disturbance kinetic energy,

E_zt_)ﬂdtﬁ’ is independent of the disturbance amplitude, if a

disturbance of finite amplitude has a certain instantancous growth
rate, so does the corresponding infinitesimal disturbance with a
theory of linear growth mechanism.[9] It will be also revealed in
present paragraphi that the numerical solution of subcritical
transition in PHE channel element follows the linear growth
mechanism.

The disturbance kinetic energy, E(t), can be rewritten as the

function of e 2C:t,

precisely by curve fitting method of logarithmic scale of it defined
lingarly as shown in eq.(1).

The growing rate, G, can be inferred more

y=In[E(1)/EQ)]= f( A, G,) = A,+2G,t (1)

where, 4, is a parameter.

Figure 5 shows the time-variation of the disturbance kinetic
energy rate and the decreasing rates in low Reynolds
conditions(subctitical conditions).
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Fig. § Time-variation of the reference-points-sum kinetic
energy rate of a disturbance in Re=95.24; (a) linear
scale (b) logarithmic scale.
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Fig. 6 Time-variation of the perturbation velocity of point 0 in
Re =142.86 and its analytic solution of the Orr-Sommerfeld
equation.

In Re=47.62, dE(t)/dt< 0 for all ¢> 0, and so it can
be said to be monotonically stable in the applied perturbation
condition. As Reynolds number increasing, the region of
dE(t)/dt>0 appeared in Re=71.43, and so the
monotonically stable Reynolds number, Rey, in 5% perturbation
condition is approximately O(60). It is larger than the value of
the plane Poiscille flow, 49.6, and that of the plane Couette flow,
20.7, but smaller than that of the circular pipe Poiseille flow,
81.49. In this case, there exists the indentation of disturbance
kinetic energy rate and so it is revealed that the internal wave
frequency can be determined over Re ~ O(70 ).

Reynolds number increasing, the indentation of E(t)/E(0)
becomes growing because the disturbance kinetic energy dissipation
relative  to  the flow inertia  decreases. In  addition,
In(E(t)/E(0)) of lower Reynolds number are closely following
the linear equation and the errors of G, are not over +0.0005 in
the cases of Re< 166.67. [t means that the disturbance kinetic
energy decays with time and the flow field becomes steady state
in low Reynolds number.

Figure 6 shows the time-variation of the perturbation velocity of
the center point of control volume in Re=142.86, and its analytic
solution of the Orr-Sommerfeld equation. The perfurbation velocity
decreased with time to the steady state and so it is the linearly
stable condition, Re < Re..  The numerical result for the
fluctvating velocity follows precisely the solution of simplified
Orr-Sommerfeld equation, eq.(2) in the error of 0.4%.

SJ,/(%: e%fcos(2m0t) 2)

This result shows that the time-variation of fluctuating energy
suggests precisely the disassembled vector components of the wave
decrease of fluctuating velocity and so the difficulty of data
aquisition and management for the wave growth and reduction can
be overcome by the macroscopically synthesized method.

Figure 7 shows the variation of the wave decreasing rate with
respect to  Reynolds number. It shows the dependency of the
decreasing rate on Reynolds number and the extrapolation of the
(Re, — G,) data points intimates destabilization, — G,.= 0, with
the critical Reynolds number for the onset of unsteadiness, Re,
of approximately 157.3. It means that, for subcritical Reynolds
number(below Re ~ 157.3), the perturbation energy dissipates and
the flow field result in steady state as {—oco and, for
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Fig. 7 The wave decreasing rate with respect to Reynolds
number; Re, = 157.3.

supercritical Reynolds number, the stable flow is unsteady and
becomes time-periodic corresponding to a nomlinear self-sustained
flow oscillation.  The critical Reynolds number for the PHE
element is 2.7% and 30% of plane Poiseille flow, 5772, and
Blasius flow, 520, respectively. Especially, it is about 16% of
2-dimensionally grooved channel revealed by N. K. Ghaddar et
al[9] It infers that the 3-dimensionally cross-corrugated geometry
enhances the self-sustained oscillation through wall-shape-induced
flow destabilization in similar hydrodynamic condition and promotes
energy transport more effectively in result.

To clarify the flow oscillation in supercritical region, the
time-periodic variation of the three-dimensional streamlines of the
self-sustained flow oscillation during one cycle in Re=500 was
shown in Fig. 8.

Figure 9 shows the variation of flow natural frequency with
respect to Reynolds number by FFT method and it reveals that
flow in a PHE element has an oscillatory pattern which is almost
linearly-dependent on the Reynolds number and the vortex shedding

(t4,¥T=0.625

AP (pascal)

(L4 )/T=0.75

{t4,)/T=0.875

(4. ¥T=1.0

Fig. 8 The time-periodic variation of streamlines of the
self-sustained flow oscillation during one cycle in Re= 500.
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Fig. 9 The variation of flow natural frequency with respect to
Reynolds number.

occurs in the range 102< Re<10° with an average Strouhal
number, Qx~(.6.

CONCLUSION

The wall-shape-induced flow destabilization and its time-periodic
oscillation in the three-dimensionally complicated energy dissipation
fields of the cross-corrugated passages occur in much lower
Reynolds number, Re~ 157.3, comesponding to other general
conditions; 2.7% of plane Poiseille flow, 5772, 30% of Blasius
flow, 520, 16% of 2-dimensionally grooved channel. We also
clarified the time-periodic variation of flow field and energy
transportation in super-critical Reynolds number in PHE. Lastly, we
revealed that the flow natural frequency varies linearly with the
Reynolds number in the range 10%¢ Re¢10® and the flow
oscillation occurs with an average Strouhal number, 0=~0.6.
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