• Title/Summary/Keyword: Flow of Fluid

Search Result 7,373, Processing Time 0.033 seconds

Design and Performance Test of Savonius Tidal Current Turbine with CWC (사보니우스형 조류발전 터빈의 설계 및 회류수조 실험을 통한 성능평가)

  • Jo, Chul-Hee;Lee, Jun-Ho;Rho, Yu-Ho;Ko, Kwang-Oh;Lee, Kang-Hee
    • Journal of Ocean Engineering and Technology
    • /
    • v.26 no.4
    • /
    • pp.37-41
    • /
    • 2012
  • Due to global warming, the need to secure alternative resources has become more important nationally. Because of the very strong current on the west coast, with a tidal range of up to 10 m, there are many suitable sites for the application of TCP (tidal current power) in Korea. In the southwest region, a strong current is created in the narrow channels between the numerous islands. A rotor is an essential component that can convert tidal current energy into rotational energy to generate electricity. The design optimization of a rotor is very important to maximize the power production. The performance of a rotor can be determined using various parameters, including the number of blades, shape, sectional size, diameter, etc. There are many offshore jetties and piers with high current velocities. Thus, a VAT (vertical axis turbine) system, which can generate power regardless of flow direction changes, could be effectively applied to cylindrical structures. A VAT system could give an advantage to a caisson-type breakwater because it allows water to circulate well. This paper introduces a multi-layer vertical axis tidal current power system. A Savonius turbine was designed, and a performance analysis was carried out using CFD. A physical model was also demonstrated in CWC, and the results are compared with CFD.

Sensitivity Analysis of Design Parameters of Air Tightness in Underground Lined Rock Cavern (LRC) for Compressed Air Energy Storage (CAES) (복공식 지하 압축공기에너지 저장공동 기밀시스템 설계변수의 민감도 해석)

  • Kim, Hyung-Mok;Rutqvist, Jonny;Ryu, Dong-Woo;Sun-Woo, Choon;Song, Won-Kyong
    • Tunnel and Underground Space
    • /
    • v.21 no.4
    • /
    • pp.287-296
    • /
    • 2011
  • We performed a numerical modeling study of thermodynamic and multiphase fluid flow processes associated with underground compressed air energy storage (CAES) in a lined rock cavern (LRC). We investigated air tightness performance by calculating air leakage rate of the underground storage cavern with concrete linings at a comparatively shallow depth of 100 m. Our air-mass balance analysis showed that the key parameter to assure the long-term air tightness of such a system was the permeability of both concrete linings and surrounding rock mass. It was noted that concrete linings with a permeability of less than $1.0{\times}10^{-18}\;m^2$ would result in an acceptable air leakage rate of less than 1% with the operational pressure range between 5 and 8 MPa. We also found that air leakage could be effectively prevented and the air tightness performance of underground lined rock cavern is enhanced if the concrete lining is kept at a higher moisture content.

Design of a Perforated Panel for Transmission Noise Reduction (투과 소음 저감을 위한 다공성 패널 설계)

  • Park, Younghyo;Bae, Jaehyeok;Lee, Jin Woo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.39 no.4
    • /
    • pp.437-445
    • /
    • 2015
  • A design method for a perforated panel is suggested to reduce the level of incident noise without obstructing the flow of incoming fluid. The key idea was to insert an array of 1/4 wavelength tubes around the holes of the perforate panel. First, various case studies were performed for a unit model with only one hole. In order to avoid any increase in the panel thickness, the unit model was vertically divided into three layers, and only the middle layer was used as the design domain. The number and array of 1/4 wavelength tubes connected to the hole were optimized to obtain the widest effective frequency range in the transmission loss curve as possible. Then, the optimally designed unit model was converted to a periodic array in the perforated panel to achieve the design goals. Even if the target frequency and the target transmission loss were set to 1000 Hz and 10 dB, respectively, the suggested design method for the a perforated panel could achieve noise reduction for various target values.

Structure design of regenerative cooling chamber of liquid rocket thrust chamber (액체로켓 연소기 재생냉각 챔버 구조설계)

  • Ryu, Chul-Sung;Choi, Hwan-Seok;Lee, Dong-Ju
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.33 no.12
    • /
    • pp.109-116
    • /
    • 2005
  • Elastic-plastic structural analysis for regenerative cooling chamber of liquid rocket thrust chamber is performed. Uniaxial tension test is also conducted for the copper alloy in order to get material data necessary for the structure analysis. The results of uniaxial tension test reveal that copper alloy become ductile after brazing process and flow stress becomes lower as temperature becomes higher. As a result of structural analysis using the material data, the deformation of cooling channel is more increased by thermal load than by internal pressure of cooling fluid. Therefore, the results of analysis show that structural stability and cooling performance of combustion thrust chamber which is designed to endure mechanical load and minimized a channel thickness are improved by decreased thermal load as possible.

Effect of Crust Increase on Natural Convection Heat Transfer in the Molten Metal Pool (용융 금속의 고화층 증가가 자연대류 열전달에 미치는 영향)

  • Park, Rae-Joon;Choi, Sang-Min;Kim, Sang-Baik;Kim, Hee-Dong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.23 no.2
    • /
    • pp.226-233
    • /
    • 1999
  • An experimental study has been performed on natural convection heat transfer with a rapid crust formation in the molten metal pool of a low Prandtl number fluid. Two types of steady state tests, a low and high geometric aspect ratio cases in the molten metal pool, were performed. The crust thickness by solidification was measured 88 a function of boundary surface temperatures. The experimental results on the relationship between the Nusselt number and Rayleigh number In the molten metal pool with a crust formation were compared with existing correlations. The experimental study has shown that the bottom surface temperature of the molten metal layer, in all experiments. is the major influential parameter in the crust formation, duo to the natural convection flow. The Nusselt number of the case without a crust formation in the molten metal pool is greater than that of the case with the crust formation at the same Rayleigh number. The present experimental results on the relationship between the Nusselt number and Rayleigh number In the molten metal pool match well with Globe and Dropkin's correlation. From the experimental results, a now correlation between the Nusslet number and Rayleigh number in the molten metal pool with the crust formation was developed as $Nu=0.0923(Ra)^{0.302}$ ($2{\times}10^4< Ra<2{\times}10^7$).

Supersonic Multi-species Jet Interactions of Hit-to-Kill Interceptor with High Temperature Effect (고온효과를 고려한 직격 요격체 다화학종 초음속 제트 간섭)

  • Baek, Chung;Lee, Seungsoo;Huh, Jinbum
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.48 no.3
    • /
    • pp.187-194
    • /
    • 2020
  • In this study, computational analyses are carried out to investigate the interference flows and the aerodynamic characteristics of a hit-to-kill intercepter due to lateral jets at medium altitude. In addition, the analyses are performed for air and multi-species gas used in the side jet. The results indicate that the position of the barrel shock are shifted upstream and the structure of the shock wave are changed for the multi-species jet when compared to the air jet. As a result, the high pressure region with multi-species jet moves forward and the pitching moment is higher under the same flow condition. Moreover, the inclusion of high temperature effects makes drastic changes in pressure distribution. The jet width is much bigger, and the jet diffuses over wider range in medium altitude than in low altitude, because of the low density of the freestream.

Comparison of Improving Dewatering Process at Clay-Sandy Soil based on Pulse-Electrokinetic Technology and Continuous-Electrokinetic Technology (펄스동전기법과 연속처리동전기법을 이용한 점토성-사질토의 탈수화 효율 비교)

  • Shin, Sanghee
    • Journal of the Korean GEO-environmental Society
    • /
    • v.15 no.4
    • /
    • pp.37-41
    • /
    • 2014
  • Pulse electrokinetic technology is proposed for improving the dewatering-process from clay-sandy soil. Proposed electrokinetic technology is to be the dewatering process due to fluid movement of current flow for the stability of clay-sandy soils. Samples produced in this study were completed to verify the proposed performance for 7 days by gradually increasing the pressure to the final pressure of 30 psi ($2.11kgf/cm^2$) through the compression process. In this study, pulse electrokinetic treatment and conventional continuous electrokinetic treatment are tested and observed, respectively. The condition of continuous electrokinetic treatment is a continuous process during 48 hours. And the condition of pulse electrokinetic treatment system is to interrupt the power three times for 48 hours, every 8 hours. These treatments are that the voltage gradient is 3 V/cm. As a result, the efficiency of pulse electrokinetic is similar to the continuous electrokinetic. The power consumption efficiency of pulse electrokinetic is better than continuous electrokinetic.

Numerical Study on the Characteristics of Thermal Plasmas Disturbed by Inserting a Langmuir Probe (랑뮤어 탐침에 의해 변형된 열플라즈마 특성에 관한 해석적 연구)

  • Lee, J.C.;Kim, Y.J.
    • Journal of the Korean Vacuum Society
    • /
    • v.17 no.3
    • /
    • pp.189-194
    • /
    • 2008
  • Measurements with a Langmuir probe, which are the most often used procedures of plasma diagnostics, can disturb plasma flows and change its characteristics quite a little because the probe should be inserted into thermal flowing plasmas. In this study, we calculated the characteristics of thermal plasmas with and without the probe into an atmospheric argon free-burning arc numerically, and investigated aerodynamic and thermal disturbances with temperature and axial velocity distributions. For the modelling of thermal plasmas, we have made two governing equations, which are on the thermal-flow and electromagnetic fields, coupled together with a commercial CFD package and user-coded subroutines. It was found that thermal disturbances happened to both sides of the probe, before and behind, seriously. Due to the aerodynamic disturbance, we could find that there were the stagnation point in front of the probe and the wake behind it. Therefore, aerodynamic and thermal disturbances caused by the probe insertion should be considered to increase the reliability of the probe diagnostics.

The Experimental Research for the Collecting Characteristics of the Passive and Active type Domestic Solar Hot Water Systems (자연형 및 설비형 태양열 온수기의 집열특성에 대한 실험적 연구)

  • Lee, Dong-Won;Lee, Kyoung-Ho
    • Journal of the Korean Solar Energy Society
    • /
    • v.33 no.6
    • /
    • pp.12-18
    • /
    • 2013
  • Domestic solar hot water system can be divided into a passive type and an active type. In a passive type the storage tank is horizontally mounted immediately above the solar collectors. No pumping is required as the hot water naturally rises into the storage tank from the collectors through thermo-siphon flow. While, in an active type the storage tank is ground- or floor-mounted and is below the level of the collectors; a circulating pump moves water or heat transfer fluid between the storage tank and the collectors. We installed two types solar hot water systems consisting of the same storage tank and collectors at the same place, and were measured and compared typical operating characteristics under the same external conditions. In particular, the daily system performance was presented through the stirring test after the sunset. The results show that the amount of solar radiation obtained for an active type were less than a passive type on a cloudy day, because the operation of the circulation pump stops frequently took place on that day. However, on a sunny day, depending on the stable operation of the circulation pump, the amount of solar radiation obtained for an active type were increased than a passive type.

A Preliminary Study of Enhanced Predictability of Non-Parametric Geostatistical Simulation through History Matching Technique (히스토리매칭 기법을 이용한 비모수 지구통계 모사 예측성능 향상 예비연구)

  • Jeong, Jina;Paudyal, Pradeep;Park, Eungyu
    • Journal of Soil and Groundwater Environment
    • /
    • v.17 no.5
    • /
    • pp.56-67
    • /
    • 2012
  • In the present study, an enhanced subsurface prediction algorithm based on a non-parametric geostatistical model and a history matching technique through Gibbs sampler is developed and the iterative prediction improvement procedure is proposed. The developed model is applied to a simple two-dimensional synthetic case where domain is composed of three different hydrogeologic media with $500m{\times}40m$ scale. In the application, it is assumed that there are 4 independent pumping tests performed at different vertical interval and the history curves are acquired through numerical modeling. With two hypothetical borehole information and pumping test data, the proposed prediction model is applied iteratively and continuous improvements of the predictions with reduced uncertainties of the media distribution are observed. From the results and the qualitative/quantitative analysis, it is concluded that the proposed model is good for the subsurface prediction improvements where the history data is available as a supportive information. Once the proposed model be a matured technique, it is believed that the model can be applied to many groundwater, geothermal, gas and oil problems with conventional fluid flow simulators. However, the overall development is still in its preliminary step and further considerations needs to be incorporated to be a viable and practical prediction technique including multi-dimensional verifications, global optimization, etc. which have not been resolved in the present study.