• Title/Summary/Keyword: Flow deviation

검색결과 546건 처리시간 0.02초

축류터빈에서 끝간격 유동에 의한 편향각과 압력손실의 모형 (Modeling of Deviation Angle and Pressure Loss Due to Rotor Tip Leakage Flow Effects in Axial Turbines)

  • 윤의수;박부룡;정명균
    • 대한기계학회논문집B
    • /
    • 제22권11호
    • /
    • pp.1591-1602
    • /
    • 1998
  • Simple spanwise distribution models of deviation angle and pressure loss coefficient due to the tip leakage flow are formulated for use in association with the streamline curvature method as a flow analysis. Combining these new models with the previous deviation and loss models due to secondary flow, a robust streamline curvature method is established for flow analysis of single-stage, subsonic axial turbines with wide ranges of turning angle, aspect ratio and blading type. At the exit from rotor rows, the flow variables are mixed radially according to a spanwise transport equation. The proposed streamline curvature method is tested against a forced vortex type turbine as well as a free vortex type one. The results show that the spanwise variations of flow angle, axial velocity and loss coefficients at rotor exit are predicted with good accuracy, being comparable to a steady three-dimensional Navier-Stokes analysis. This simple and fast flow analysis is found to be very useful for the turbine design at the initial design phase.

산업용 조정 피치형 축류송풍기의 성능예측에 관한 연구 (Study on Performance Prediction of Industrial Axial Flow Fan with Adjustable Pitch Blades)

  • 구재인;김창수;정진택;김광호
    • 유체기계공업학회:학술대회논문집
    • /
    • 유체기계공업학회 2001년도 유체기계 연구개발 발표회 논문집
    • /
    • pp.30-34
    • /
    • 2001
  • In the present study, we studied the method of predicting the on-design and on-design point performance of axial flow fan with adjustable pitch blades. With the change of stagger angle of axial flow fan with adjustable pitch blade, flow rate and pressure can be changed. Because of this merit adjustable pitch fans are used in many industrial facility. When changing stagger angle or estimating the performance at a wide range of off-design condition, incidence angle changes greatly as the flow rate changes. Therefore, the deviation angle at the blade exit is estimated by the correlation considering the effects of blade design, incidence angle variation. In the loss model, we used known pressure loss model for blade boundary layer and wake, secondary flow, endwall boundary layer and tip leakage flow. The results of modified deviation angle model and experiment were compared for the usefulness of the modified model.

  • PDF

VIC# 자료동화 기법을 통해 재구축된 유동장의 상사성에 관한 비교 연구 (A Comparative Study on Similarity of Flow Fields Reconstructed by VIC# Data Assimilation Method)

  • 전영진
    • 한국가시화정보학회지
    • /
    • 제16권2호
    • /
    • pp.23-30
    • /
    • 2018
  • The present study compares flow fields reconstructed by data assimilation method with different combinations of parameters. As a data assimilation method, Vortex-in-Cell-sharp (VIC#), which supplements additional constraints and multigrid approximation to Vortex-in-Cell-plus (VIC+), is used to reconstruct flow fields from scattered particle tracks. Two parameters, standard deviation of Gaussian radial basis function (RBF) and grid spacing, are mainly tested using artificial data sets which contain few particle tracks. Consequent flow fields are analyzed in terms of flow structure sizes. It is demonstrated that sizes of the flow structures are proportional to an actual scale of the standard deviation of RBF. It implies that a combination of larger grid spacing and smaller standard deviation which preserves the actual standard deviation is able to save computational resources in case of a low track density. In addition, a simple comparison using an experimental data filled with dense particle tracks is conducted.

접선 연소식 보일러의 최종 과열기 열부하 분포 및 튜브 온도 예측에 관한 연구 (Prediction of Thermal Load Distribution and Temperature of the Superheater in a Tangentially Fired Boiler)

  • 박호영;서상일
    • 설비공학논문집
    • /
    • 제20권7호
    • /
    • pp.478-485
    • /
    • 2008
  • The extreme steam temperature deviation experienced in the superheater of a tangentially fired boiler can seriously affect its economic and safe operation. This temperature deviation is one of the main causes of boiler tube failures. The steam temperature deviation is mainly due to the thermal load deviation in the lateral direction of the superheater. The thermal load deviation consists of several causes. One of the causes is the non-uniform heat flow distribution of burnt gas on the superheater tube system. This distribution is very difficult to measure in situ using direct experimental techniques. So, we need thermal load model to estimate the tube temperature. In this paper, we propose a thermal load distribution model by using CFD analysis and plant data. We successfully predict the tube temperature and the steam flow rate in a final superheater system from the thermal load model and one dimensional heat-flow system analysis. The proposed model and analysis method would be valuable in preventing the frequent tube failure of the final superheater tubes.

축류터빈의 동익에서 끝간격 누설유동에 의한 편향각과 압력손실의 모형화 (Modeling of Deviation Angle and Pressure Loss due to Rotor Tip Leakage Flow in Axial Turbines)

  • 윤의수;오군섭;정명균
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 1998년도 제10회 학술강연회논문집
    • /
    • pp.13-13
    • /
    • 1998
  • A simple model of the tip leakage flow models of the rotor downstream flow is developed, based on Lakshminarayana's theoretical concept on the tip clearance flow and the experimental data published in open literature. And new spanwise distribution models of deviation angle and pressure loss coefficient due to the tip leakage flow are formulated for use in association with the streamline curvature method as a through flow analysis. Combining these new models and previous deviation and loss models due to secondary flow, a robust streamline curvature method is established for flow analysis of single-stage, subsonic axial turbines with wide ranges of turning angle, aspect ratio and blading type. At the exit from rotor rows, the flow variables are mixed radially according to a spanwise transport equation. The proposed streamline curvature method is tested against a forced vortex type turbine as well as a free vortex type one. The results show that the spanwise variations of flow angle, axial velocity and loss coefficients at rotor exit are predicted with good accuracy, being comparable to a steady three-dimensional Navier-Stokes analysis. This simple and fast flow analysis is found to be very useful for the turbine design at the initial design phase.

  • PDF

軸流壓縮機 回轉翼列의 流出偏差角에 관한 硏究 (A study on the deviation angle of the rotating blade row in an axial- flow compressor)

  • 조강래;방영석
    • 대한기계학회논문집
    • /
    • 제12권6호
    • /
    • pp.1407-1414
    • /
    • 1988
  • 본 연구에서는 저자들에 의해 이미 개발된 경계유선수정법에 의한 B-B 유동계 산을 통해 익열의 편차각을 계산하고 기존의 예측방법에 의한 결과와 비교 검토하여 압축성 및 3차원 비축대칭성의 효과를 검토하였다.

Adaptive mass flow method 유압압하식 자동 두께제어 장치에 관한 연구 (A Study on the Hydraulic Automatic Gauge Control System of Adaptive Mass Flow Method)

  • 윤순현;김문경
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제20권4호
    • /
    • pp.101-107
    • /
    • 1996
  • This test was performed on the hydraulic automatic gauge control(AGC) system of adaptive mass flow method. Fundamental purpose of this study are performance evaluation of this AGC system under the actual rolling condition. It was concluded that the response of AGC system depends on the dynamic characteristics of a reel motor or roll position. The test results are as follows : 1) The control method of reel motor current is better than than of the roll position as AGC system. 2) The more steel strip thickness of delivery side is thick, the larger the gauge deviation is large, and the more it is thin, the larger the gauge deviation rate is large. 3) Because the gauge deviation is large at acceleration and deceleration speed than steady speed, so AGC system is better to adopt over 50m/min. By applying this AGC system, not only the accurary in strip thickness were improved but also productivity was improved dramatically.

  • PDF

주거 환기 시스템의 공기 분배 성능 개선 방안 (A Method for Improving Air Distribution Performance at the Residence Ventilation System)

  • 박은준;김용봉;나희형;이상기
    • 대한설비공학회:학술대회논문집
    • /
    • 대한설비공학회 2007년도 동계학술발표대회 논문집
    • /
    • pp.589-593
    • /
    • 2007
  • In the mechanical ventilation system, it is a fundamental condition to distribute the air equally to the each room. In this study, distribution performance of the air distributor which generally connected to a circular duct was investigated by simulation and experiment. In the first CFD analysis, maximum air flow rate deviation was an 63% in the air distributor model. After numbers of model modification and simulation, maximum flow rate deviation was reduced to 19% in the final simulation model. An air distributor which used in the experiment was produced by using data obtained from the final analysis. When experimental result was compared with analysis result, there was a deviation difference as much as 9%.

  • PDF

과열기 관군에서의 증기유량 균일 배분 연구 (A Study on the Uniform Distribution of Steam Flow in the Superheater Tube System)

  • 박호영;김성철
    • 설비공학논문집
    • /
    • 제20권6호
    • /
    • pp.416-426
    • /
    • 2008
  • The boiler tube failure often experienced in the superheater of a utility boiler can seriously affect the economic and safe operation of the power plant. It has been known that this failure is mainly caused by the thermal load deviation in the superheater tube system, and deeply intensified by the non-uniform distribution of steam flow rates. The nonuniform steam flow is distinctively prominent at low power load rather than at full power load. In this paper, we analyze the steam flow distribution in the superheater tube system by using one dimensional flow network model. At 30% power load, the deviation of steam flow rate is predicted to be within 0.8% of the averaged flow rate. This deviation can be reduced to 0.1% and 0.07% by assuming two cases, that is, the removal of 13th tube at each tube rows and the installation of intermediate header, respectively. The assumed two cases would be effective for the uniform steam flow distribution across 85 superheater tube rows.

배열회수장치의 유동특성에 관한 수치적 연구 (NUMERICAL STUDY ON FLOW CHARACTERISTIC IN THE HEAT RECOVERY STEAM GENERATOR)

  • 최훈기;유근종;신병주;김철환
    • 한국전산유체공학회지
    • /
    • 제15권1호
    • /
    • pp.17-23
    • /
    • 2010
  • Performance improvements of the heat recovery steam generator(HRSG) can be achieved by improving the flow distribution of exhaust gases for a various type of different equipments. A number of design parameters are systematically investigated and their effects on an index of velocity deviation established. The parameters include the three shape of the transition duct and the wide range of the guide vane angles. The numerical results clearly reveal feature of the flow pattern in the transition duct, velocity deviation and pressure drop at tube bank part.