• Title/Summary/Keyword: Flow channel design

Search Result 519, Processing Time 0.03 seconds

CHANGES IN STAGNATION REGION AND RESIDENCE TIME OF COOLING WATER FOR VARIOUS FLOW CHANNEL GEOMETRY OF WATER COOLING GRATE (수냉식 화격자 유로 형상에 따른 냉각수의 정체 영역 및 체류 시간 변화)

  • Song, D.K.;Kim, S.B.;Park, D.W.
    • Journal of computational fluids engineering
    • /
    • v.21 no.2
    • /
    • pp.106-111
    • /
    • 2016
  • Waste-to-energy facilities including incinerators are known as an efficient method to reduce wastes. In waste-to-energy facilities, more efficient cooling system is still needed for grates as the energy density of waste increased. For better cooling performance with the water-cooled grates, optimal design of cooling water pathways is highly beneficial. We performed numerical investigation on fluid flow and residence time of cooling water with change of the geometry of the cooling water pathway. With addition of round shaped guide vanes in the water pathway, the maximum residence time of flow is reduced(from 4.3 sec. to 2.4 sec.), but there is no significant difference in pressure drop between inlet and outlet, and average residence time at the outlet. Furthermore the flow stagnation region moves to the outlet, as the position of the round shaped guide vanes is located to the neck point of pathways.

The Beat and Flow Analysis of the Liquid Helium for the Pressurization of Liquid Rocket Propellant Tank (액체로켓 추진제 탱크 가압용 액체헬륨의 열유동 해석)

  • 조기주;정영석;조인현;김용욱;이대성
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.7 no.1
    • /
    • pp.10-17
    • /
    • 2003
  • The steady and transient thermal and flow analysis for liquid helium using for the pressurization of liquid rocket propellant tanks have been conducted numerically. The required inner diameter of helium channel that satisfy the design mass flow rate and velocity, through the steady state analyses for various thermal conditions at the wall, is determined and it is found that due to the sign of Joule-Thomson coefficient of helium, the temperature of helium increase monotonically for adiabatic wall condition. The temporal behavior of helium temperature, density, velocity are also investigated under the existence of local heat inflow on the wall.

Performance of a Horizontal-axis Turbine Based on the Direction of Current Flow (수평축 조류발전 로터의 유향변화에 따른 효율 고찰)

  • Jo, Chul-Hee;Park, Ro-Sik;Yim, Jin-Young;Lee, Kang-Hee
    • Journal of Ocean Engineering and Technology
    • /
    • v.24 no.4
    • /
    • pp.8-12
    • /
    • 2010
  • The use of a tidal-current power system is one source of renewable energy that can minimize the environmental impact of power production and offer many other advantages compared to conventional energy sources. Unlike other energy production approaches, rate of energy production can be precisely predicted and the operational rate is very high. The performance of the rotor, which has a vital role in energy production using tidal currents, is determined by various design factors, and it should be optimized for the specific ocean environment in the field. The horizontal-axis turbine is very sensitive to the direction of flow, and flow direction changes due to rise and fall of the tides. To investigate the performance of the rotor considering the interaction problems with incidence angle of flow, a series of experiments were conducted, and a 3D CFD model was designed and analyzed by ANSYS CFX. The results and findings are summarized in the paper.

Generation of sheath-free particle beam: application to micro-flow cytometry (외피유체 없이 입자 빔의 발생: 유세포 분류기 응용)

  • Kim, Young-Won;Yoo, Jung-Yul
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03b
    • /
    • pp.581-584
    • /
    • 2008
  • A generation of a particle beam is the key technique in a flow cytometry that measures the fluorescence and light scattering of individual cell and other particulate or molecular analytes in biomedical research. Recent methods performing this function require a laborious and time-consuming assembly. In the present work, we propose a novel device for the generation of an axisymmetrical focusing beam of microparticles (3-D focusing) in a single capillary without sheath flows. This work uses the concept that the particles migrate toward the centerline of the channel when they lag behind the parabolic velocity profile. Particle focusing of spherical particles was successfully made with a beam diameter of about 10 ${\mu}$m. Proposed device provides crucial solutions for simple and innovative 3-D particle focusing method for the applications to the MEMS-based micro-flow cytometry. We believe that this device can be utilized in a wide variety of applications, such as biomedical/ biochemical engineering.

  • PDF

Experimental investigation on flow field around a flapping plate with single degree of freedom

  • Hanyu Wang;Chuan Lu;Wenhai Qu;Jinbiao Xiong
    • Nuclear Engineering and Technology
    • /
    • v.55 no.6
    • /
    • pp.1999-2010
    • /
    • 2023
  • Undesirable flapping motion of discs can cause the failure of swing check valves in nuclear passive safety systems. Time-resolved particle image velocimetry (PIV) was employed to investigate the flow characteristics around a free-to-rotate plate and the motion response, with the Reynolds numbers, based on the hydraulic diameter of the channel, from 1.32 × 104 to 3.95 × 104. Appreciable flapping motion (±3.52°) appeared at the Reynolds number of 2.6 × 104 with the frequency of 5.08 Hz. In the low-Reynolds-number case, the plate showed negligible flapping. In the high-Reynolds-number case, the deflection angle increased with reduced flapping amplitude. The torque from the fluid determined the flapping amplitude. In the low-Reynolds-number case, Karman vortices were absent. With increasing Reynolds numbers, Karman vortices developed behind the plate with larger deflection angles. Strong interaction between the wake flow from the leading and trailing edge of the plate was observed. Based on power spectrum density (PSD) analysis, the vortex shedding frequency coincided with the flapping frequency, and the amplitude was positively correlated to the strength of the vortices. Proper orthogonal decomposition (POD) modes evince that, in the case of appreciable motion, coherent structures exhibited a larger spatial scale, enhancing the magnitude of the external torque on the plate.

A Study on the Factors Affecting the Use and Satisfaction of Internet Ticketing Systems (인터넷 티켓팅 시스템의 사용과 만족에 영향을 미치는 요인)

  • Woo, Sung-Hwa;Kim, Kyung-Kyu;Chang, Hang-Bae;Shin, Ho-Kyoung
    • Asia pacific journal of information systems
    • /
    • v.17 no.3
    • /
    • pp.1-24
    • /
    • 2007
  • With the development of information technology (IT), various information systems (IS) such as Web-based systems and mobile systems have appeared utilizing different technologies. However, recent studies on IS use and user satisfaction rarely account for technological differences among IS and environmental characteristics where IS are intended to be used. The purpose of this research is to investigate the determinants of the use of Web-based ticketing systems for cultural activities and to empirically validate their relationships. Environmental psychology suggests that human beings respond to external stimuli from environments with their emotions, and their emotional states influence human actions, e.g., IS use in this research. Applying environmental psychology to the use of Web-based systems in the culture and entertainment industry, we propose that web site characteristics first influence a user's internal state of mind (i.e., flow) and then the flow state influences the IS use. Studies related to the state of flow collectively affirm the key role played by the flow construct in shaping individual attitudes and behaviors toward IS. Users' flow states are captured by their shopping enjoyment, perceived behavioral control, and the level of concentration on the IS use. Referring to social presence theory, we have included such web site characteristics as content quality, context of web site, and community quality. In our research model, a second order construct is utilized to represent web site quality, because flow theory suggests that holistic experiences with web-based systems (rather than individual characteristics of the web site) are important in explaining the IS use. Further, we have included trust as another important factor influencing the IS use since business transactions on the web encompass higher uncertainty comparing to offline transactions. In order to test our hypotheses, we have conducted an online survey which results in 1,141 valid responses in the final sample. The data were collected from respondents who have experiences in Internet ticketing systems. Although it was a convenient sample, the sample represents a wide variety of user demographics. Validity and reliability of the research instrument were tested and research hypotheses were examined using PLS Graph 3.0. The results indicate that web site characteristics significantly influence the level of user concentration, user's enjoyment in shopping, and perceived behavioral control. Further, the use of Internet ticketing systems is influenced by users' flow states and trust in the web channel. User satisfaction is turned out to be affected by the use of Internet ticketing systems. Unlike extant research on the relationship between web site characteristics and its use, our study has found that, in the culture and entertainment industry, the impact of web site characteristics on IS use is mediated by a user's flow state. This finding has a practical implication that web site design should include as many features that enhance shopping enjoyment and concentration. Other practical implications of these findings and future research implications are also discussed.

Development of Numerical Technique to Analyze the Flow Characteristics of Porous Media Using Lattice Boltzmann Method (격자볼쯔만법을 이용한 다공체의 유동특성 분석방법 개발에 관한 연구)

  • Kim, Hyung Min
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.40 no.11
    • /
    • pp.689-695
    • /
    • 2016
  • The performance of proton exchange membrane fuel cells (PEMFC) is strongly related to the water flow and accumulation in the gas diffusion layer (GDL) and catalyst layer. Understanding the behavior of fluid from the characteristics of the media is crucial for the improvement of the performance and design of the GDL. In this paper, a numerical method is proposed to calculate the design parameters of the GDL, i.e., permeability, tortuosity, and effective diffusivity. The fluid flow in a channel filled with randomly packed hard spheres is simulated to validate the method. The flow simulation was performed by lattice Boltzmann method with bounce back condition for the solid volume fraction in the porous media, with different values of porosities. Permeability, which affects the flow, was calculated from the average pressure drop and the velocity in the porous media. Tortuosity, calculated by the ratio the average path length of the randomly injected massless particles to the thickness of the porous media, and the resultant effective diffusivity were in good agreement with the theoretical model. The suggested method can be used to calculate the parameters of real GDL accurately without any modification.

A Numerical Analysis on Cooling Performance of Microchannel Waterblock for Electronic Devices Cooling (전자기기 냉각용 마이크로채널 워터블록의 냉각성능에 관한 수치해석)

  • Choi, Mi-Jin;Kwon, Oh-Kyung;Cha, Dong-An;Yun, Jae-Ho;Lee, Chan
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.2426-2431
    • /
    • 2007
  • The microchannel waterblock has a good capability in the cooling of electronic devices. The object of this paper is to estiblish the scheme of design for the microchannel waterblock. The effects of flow rate and channel size on the cooling performances are investigated. It was found that the optimum flow rates were ragned from 0.7 lpm to 1.4 lpm. The thermal resistance at 2.0 lpm and 100 W was 0.13 $^{\circ}C$/W. Decrease in the width of channels is more effective for the improvement in the cooling performances of microchannel waterblock than increase in the height of channels. The increase of pressure drop resulted from decrease in the width of channels can be decreased by increasing the hight of channels.

  • PDF

Thermal Analysis of Exhaust Diffuser Cooling Channels for High Altitude Test of Rocket Engine (로켓엔진 고공환경 모사용 디퓨져의 냉각 채널 열 해석)

  • Cho, Kie-Joo;Kim, Yong-Wook;Kan, Sun-Il;Oh, Seung-Hyub
    • Aerospace Engineering and Technology
    • /
    • v.9 no.2
    • /
    • pp.193-197
    • /
    • 2010
  • Water cooling ducts are installed in the exhaust diffuser for high altitude tests of rocket engine to protect diffuser from high-temperature combustion gas. The mass flow rate and pressure of cooling water is designed to prevent boiling of cooling water in the ducts. Therefore, the estimation of maximum temperature of duct wall is important parameter in design of cooling system, especially pressure of cooling water. The method for predicting maximum temperatures of duct walls with variation of coolant flow rates was derived theoretically.

Numerical Study on the Active Control of Aerodynamic Properties of 2 - D Square Prism (2차원 각주의 공력특성 능동제어에 관한 수치해석 연구)

  • 이영호;김춘식;조대환
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.17 no.1
    • /
    • pp.33-44
    • /
    • 1993
  • Active control of a flow field is essential to design efficient parts or elements relating to fluid machineries. The present study is aimed to suggest a new discretization technique of the convection term by renewing the non-conservative equation found in SOLA-VOF into a conservative one. And, as an application, flow characteristics are investigated by adjusting the backward ejecting velocity of 2-D square prism to control the aerodynamic properties. Strouhal number, drag and lift coefficient are compared in terms of various ejecting velocity. Among the results, the transient weak fluctuation of the lift and drag coefficient when the ejecting velocity equals channel inlet velocity is remarkably noticed.

  • PDF