DOI QR코드

DOI QR Code

Development of Numerical Technique to Analyze the Flow Characteristics of Porous Media Using Lattice Boltzmann Method

격자볼쯔만법을 이용한 다공체의 유동특성 분석방법 개발에 관한 연구

  • Kim, Hyung Min (Dept. of Mechanical System Engineering, Kyonggi Univ.)
  • 김형민 (경기대학교 기계시스템공학과)
  • Received : 2016.04.29
  • Accepted : 2016.09.01
  • Published : 2016.11.01

Abstract

The performance of proton exchange membrane fuel cells (PEMFC) is strongly related to the water flow and accumulation in the gas diffusion layer (GDL) and catalyst layer. Understanding the behavior of fluid from the characteristics of the media is crucial for the improvement of the performance and design of the GDL. In this paper, a numerical method is proposed to calculate the design parameters of the GDL, i.e., permeability, tortuosity, and effective diffusivity. The fluid flow in a channel filled with randomly packed hard spheres is simulated to validate the method. The flow simulation was performed by lattice Boltzmann method with bounce back condition for the solid volume fraction in the porous media, with different values of porosities. Permeability, which affects the flow, was calculated from the average pressure drop and the velocity in the porous media. Tortuosity, calculated by the ratio the average path length of the randomly injected massless particles to the thickness of the porous media, and the resultant effective diffusivity were in good agreement with the theoretical model. The suggested method can be used to calculate the parameters of real GDL accurately without any modification.

연료전지의 성능에 가장 큰 영향을 주는 요소 중에 하나가 가스확산층과 촉매층에서 물의 거동이다. 따라서 가스확산층의 특성에 따른 유체의 거동의 변화를 이해하는 것은 연료전지의 성능개선과 가스확산층의 설계를 위한 필수적인 요소이다. 이 연구에서는 가스확산층의 설계요소인 기공도, 굴곡도와 유효확산계수를 수치적으로 계산할 수 있는 방법을 제안한다. 제안한 방법의 검증을 위하여 지름이 일정한 구형입자를 이용하여 기공도가 다른 다공체를 만들고 구형입자에 Bounceback 조건을 적용한 격자 볼쯔만법 유동해석을 수행하였다. 다공체 내의 유동효과를 나타내는 투과도는 다공체에 의한 압력강하와 평균유속으로 계산하고, 질량이 없는 입자의 평균 다공체 통과 거리로부터 계산한 굴곡도와 기공도를 이용하여 계산한 유효확산계수를 Neale의 이론식과 비교하여 정확하게 일치하는 것을 확인하였다. 이 방법은 실제 다공체의 이미지를 이용한 계산에도 수정없이 이용할 수 있어 연료전지의 성능향상과 설계를 위한 가스확산층의 특성분석에 활용될 수 있다.

Keywords

References

  1. Satija, R., Jacobson, D. L., Arif, M. and Werner S. A., 2004, "In Situ Neutron Imaging Technique for Evaluation of Water Management Systems in Poerating PEM Fuel Cells," J. Power Sources, Vol. 129, pp. 238-245. https://doi.org/10.1016/j.jpowsour.2003.11.068
  2. Pekula, N., Heller, K., Chuang, P. A., Turhan, A. Mench, M. M., Brenizer, J. S. and Unlu, K., 2005, "Study of Water Distribution and Transport in a Polymer Electrolyte Fuel Cell using Neutron Imaging," Nuclear Instruments and Methods in Physics Research section A, Vol. 542, pp. 134-141. https://doi.org/10.1016/j.nima.2005.01.090
  3. Lister, S., Sinton, D. and Djilali, N., 2006, "Ex Situ Visualization of Liquid Water Transport in PEM Fuel Cell Gas Diffusion Layers," J. Power Sources, Vol. 154, pp. 95-105. https://doi.org/10.1016/j.jpowsour.2005.03.199
  4. Bazjlak, A., Sinton, D., Liu, Z. S. and Bjilali, N., 2007, "Effect of Compression on Liquid Water Transport and Microstructure of PEMFC Gas Diffusion Layers," J. Power Sources, Vol. 163, pp. 784-792. https://doi.org/10.1016/j.jpowsour.2006.09.045
  5. Hickner, M. A., Siegel, N. P., Chen, K. S., Hussey, D. S., Jacobson, D. L. and Arif, M., 2008, "In Situ High-resolution Neutron Radiography of Crosssectinal Liquid Water Profiles in Proton Exchange Membrane Fuel Cells," J. Electrochem Soc., Vol. 155, pp. 427-434.
  6. Hartig, C., Manke, I., Kardjilov, N, Hilger, A., Grunerbel, M. and Kaczerowski, j., 2008, "Combined Neutron Radiography and Locally Resolved Current Density Measurements of Operating PEM Fuel Cells," J. Power Sources, Vol. 176, pp. 452-459. https://doi.org/10.1016/j.jpowsour.2007.08.058
  7. Wang, Y., Brasseur, J. G. and Banco, G. G., 2010, "Computational Modeling in Biomechanics," Springer Science Business, U.S.A.
  8. Bhatnagar, P. L, Gross, E. P. and Krook, M., 1954, "A Model for Collision Processes in Gases. I : Small Amplitude Processes in Charged and Neutral One-component System," Phys. Rev. Vol. 94, pp. 511-525. https://doi.org/10.1103/PhysRev.94.511
  9. Bruggeman, Von D. A. G., 1935, "Berechnung Verschiedener Physikalischer Konstanten von Heterogenen Substanzen," Ann. der Phys, 5. Floge, Band 24, pp. 636-665.
  10. Neale, G. H. and Nader, W. K., 1973, "Prediction of Transport Processes Within Prrous Media: Diffusive Flow Processes Within an Homogenous Swarm of Spherical Particles," AiChE Journal, Vol. 19, No. 1, pp. 112-119. https://doi.org/10.1002/aic.690190116
  11. Kim, H. M., Kim, D., Kim, W. T., Chung, P. S. and Jhon, M. S., 2007, "Langmuir Slip Model for Air Bearing Simulation Using the Lattice Boltzmann Method," IEEE Trans. on Magnetics, Vol. 43, No. 6, pp. 2244-2246. https://doi.org/10.1109/TMAG.2007.893640