DOI QR코드

DOI QR Code

Experimental investigation on flow field around a flapping plate with single degree of freedom

  • Hanyu Wang (School of Nuclear Science and Engineering, Shanghai Jiao Tong University) ;
  • Chuan Lu (State Key Laboratory of Reactor System Design Technology, Nuclear Power Institute of China) ;
  • Wenhai Qu (School of Nuclear Science and Engineering, Shanghai Jiao Tong University) ;
  • Jinbiao Xiong (School of Nuclear Science and Engineering, Shanghai Jiao Tong University)
  • Received : 2022.06.24
  • Accepted : 2023.02.19
  • Published : 2023.06.25

Abstract

Undesirable flapping motion of discs can cause the failure of swing check valves in nuclear passive safety systems. Time-resolved particle image velocimetry (PIV) was employed to investigate the flow characteristics around a free-to-rotate plate and the motion response, with the Reynolds numbers, based on the hydraulic diameter of the channel, from 1.32 × 104 to 3.95 × 104. Appreciable flapping motion (±3.52°) appeared at the Reynolds number of 2.6 × 104 with the frequency of 5.08 Hz. In the low-Reynolds-number case, the plate showed negligible flapping. In the high-Reynolds-number case, the deflection angle increased with reduced flapping amplitude. The torque from the fluid determined the flapping amplitude. In the low-Reynolds-number case, Karman vortices were absent. With increasing Reynolds numbers, Karman vortices developed behind the plate with larger deflection angles. Strong interaction between the wake flow from the leading and trailing edge of the plate was observed. Based on power spectrum density (PSD) analysis, the vortex shedding frequency coincided with the flapping frequency, and the amplitude was positively correlated to the strength of the vortices. Proper orthogonal decomposition (POD) modes evince that, in the case of appreciable motion, coherent structures exhibited a larger spatial scale, enhancing the magnitude of the external torque on the plate.

Keywords

References

  1. L.I. Ezekoye, M. Rain, T.E. Thygesen, Check Valves in Nuclear Power Plants: ASME OM Code Requirements and Industry Compliance, vol. 83884, in Pressure Vessels and Piping Conference, 2020, V008T08A018. American Society of Mechanical Engineers.
  2. H. Zhu, Y. Gao, Vortex induced vibration response and energy harvesting of a marine riser attached by a free-to-rotate impeller, Energy 134 (2017) 532-544, https://doi.org/10.1016/j.energy.2017.06.084.
  3. Q. Zhu, Energy harvesting by a purely passive flapping foil from shear flows, J. Fluid Struct. 34 (2012) 157-169, https://doi.org/10.1016/j.jfluidstructs.2012.05.013.
  4. J. Toomey, J.D. Eldredge, Numerical and experimental study of the fluid dynamics of a flapping wing with low order flexibility, Phys. Fluids 20 (7) (2008), 073603, https://doi.org/10.1063/1.2956372.
  5. M.S. Triantafyllou, A.H. Techet, F.S. Hover, Review of experimental work in biomimetic foils, IEEE J. Ocean. Eng. 29 (3) (2004) 585-594. https://doi.org/10.1109/JOE.2004.833216
  6. A. Fernandes, S. Mirzaeisefat, Flow induced fluttering of a hinged vertical flat plate, Ocean. Eng. 95 (2015) 134-142. https://doi.org/10.1016/j.oceaneng.2014.12.009
  7. D.-L. Gao, G.-B. Chen, Y.-W. Huang, W.-L. Chen, H. Li, Flow characteristics of a fixed circular cylinder with an upstream splitter plate: on the plate-length sensitivity, Exp. Therm. Fluid Sci. 117 (2020), 110135.
  8. G.R. Assi, P. Bearman, N. Kitney, Low drag solutions for suppressing vortex-induced vibration of circular cylinders, J. Fluid Struct. 25 (4) (2009) 666-675. https://doi.org/10.1016/j.jfluidstructs.2008.11.002
  9. F. Gu, J.S. Wang, X.Q. Qiao, Z. Huang, Pressure distribution, fluctuating forces and vortex shedding behavior of circular cylinder with rotatable splitter plates, J. Fluid Struct. 28 (2012) 263-278, https://doi.org/10.1016/j.jfluidstructs.2011.11.005.
  10. H. Zhu, Z. Liao, Y. Gao, Y. Zhao, Numerical evaluation of the suppression effect of a free-to-rotate triangular fairing on the vortex-induced vibration of a circular cylinder, Appl. Math. Model. 52 (2017) 709-730. https://doi.org/10.1016/j.apm.2017.07.045
  11. G.R.S. Assi, P.W. Bearman, M.A. Tognarelli, On the stability of a free-to-rotate short-tail fairing and a splitter plate as suppressors of vortex-induced vibration, Ocean. Eng. 92 (2014) 234-244, https://doi.org/10.1016/j.oceaneng.2014.10.007.
  12. S. Shukla, R. Govardhan, J. Arakeri, Flow over a cylinder with a hinged-splitter plate, J. Fluid Struct. 25 (4) (2009) 713-720. https://doi.org/10.1016/j.jfluidstructs.2008.11.004
  13. L. Lu, X.-l. Guo, G.-q. Tang, M.-m. Liu, C.-q. Chen, Z.-h. Xie, Numerical investigation of flow-induced rotary oscillation of circular cylinder with rigid splitter plate, Phys. Fluids 28 (9) (2016), 093604.
  14. M. Zhang, X. Wang, O. Oiseth, Torsional vibration of a circular cylinder with an attached splitter plate in laminar flow, Ocean. Eng. 236 (2021), 109514.
  15. R. Mittal, V. Seshadri, H.S. Udaykumar, Flutter, tumble and vortex induced autorotation, Theor. Comput. Fluid Dynam. 17 (3) (2004) 165-170. https://doi.org/10.1007/s00162-003-0101-5
  16. Y. Jin, S. Ji, B. Liu, L. Chamorro, On the role of thickness ratio and location of axis of rotation in the flat plate motions, J. Fluid Struct. 64 (2016) 127-137. https://doi.org/10.1016/j.jfluidstructs.2016.05.004
  17. Z. Peng, Q. Zhu, Energy harvesting through flow-induced oscillations of a foil, Phys. Fluid. 21 (12) (2009), 123602.
  18. H. Zhu, Y. Zhao, T. Zhou, CFD analysis of energy harvesting from flow induced vibration of a circular cylinder with an attached free-to-rotate pentagram impeller, Appl. Energy 212 (2018) 304-321, https://doi.org/10.1016/j.apenergy.2017.12.059.
  19. M. Breuer, N. Jovicic, K. Mazaev, Comparison of DES, RANS and LES for the separated flow around a flat plate at high incidence, Int. J. Numer. Methods Fluid. 41 (4) (2003) 357-388. https://doi.org/10.1002/fld.445
  20. K. Lam, M.Y. Leung, Asymmetric vortex shedding flow past an inclined flat plate at high incidence, Eur. J. Mech. B Fluid 24 (1) (2005) 33-48. https://doi.org/10.1016/j.euromechflu.2004.05.004
  21. D. Yang, B. Pettersen, H.I. Andersson, V.D. Narasimhamurthy, Vortex shedding in flow past an inclined flat plate at high incidence, Phys. Fluid. 24 (8) (2012), 084103.
  22. K.M. Lam, C. Wei, Numerical simulation of vortex shedding from an inclined flat plate, Eng. Appl. Comput. Fluid Mechanic. 4 (4) (2010) 569-579. https://doi.org/10.1080/19942060.2010.11015342
  23. F. Scarano, Iterative image deformation methods in PIV, Meas. Sci. Technol. 13 (1) (2001) R1.
  24. W. Qu, J. Xiong, S. Chen, X. Cheng, High-fidelity PIV measurement of cross flow in 5×5 rod bundle with mixing vane grids, Nucl. Eng. Des. 344 (2019) 131-143, https://doi.org/10.1016/j.nucengdes.2019.01.021.
  25. Y. Yang, T.W. Strganac, Experiments of vortex-induced torsional oscillation of a flat plate in cross flow, AIAA J. 51 (6) (2013) 1522-1526. https://doi.org/10.2514/1.J051976
  26. Q. Zhu, Z. Peng, Mode coupling and flow energy harvesting by a flapping foil, Phys. Fluids 21 (3) (2009), 033601.
  27. B. Zhang, S. Gong, S. Dong, Z. Xiong, Z. Zhang, Vortex shedding induced vibration of thin strip in confined rectangular channel, Prog. Nucl. Energy 141 (2021), 103951.
  28. P.S. Eagleson, J. Dally, G.K. Noutsopolous, Flow-induced Vibration of Flat Plates: the Mechanism of Self-Excitation, MASSACHUSETTS INST OF TECH CAMBRIDGE HYDRODYNAMICS LAB, 1963.
  29. John Leask Lumley, The structure of inhomogeneous turbulent flows, Atmospheric. Turbulence Radio Propagate. (1967) 166-178.
  30. N. Aubry, R. Guyonnet, R. Lima, Spatiotemporal analysis of complex signals: theory and applications, J. Stat. Phys. 64 (3) (1991) 683-739. https://doi.org/10.1007/BF01048312
  31. S. Prothin, H. Djeridi, J.-Y. Billard, Coherent and turbulent process analysis of the effects of a longitudinal vortex on boundary layer detachment on a NACA0015 foil, J. Fluid Struct. 47 (2014) 2-20, https://doi.org/10.1016/j.jfluidstructs.2013.08.014.
  32. T. Astarita, G. Cardone, Analysis of interpolation schemes for image deformation methods in PIV, Exp. Fluid 38 (2) (2005) 233-243. https://doi.org/10.1007/s00348-004-0902-3
  33. R.D. Keane, R.J. Adrian, Optimization of particle image velocimeters. I. Double pulsed systems, Meas. Sci. Technol. 1 (11) (1990) 1202.
  34. M. Raffel, C.E. Willert, F. Scarano, C.J. Kahler, S.T. Wereley, J. Kompenhans, Particle Image Velocimetry: a Practical Guide, Springer, 2018.
  35. H. Nobach, E. Bodenschatz, Limitations of accuracy in PIV due to individual variations of particle image intensities, Exp. Fluid 47 (1) (2009) 27-38. https://doi.org/10.1007/s00348-009-0627-4
  36. R. Hain, C.J. Kahler, C. Tropea, Comparison of CCD, CMOS and intensified cameras, Exp. Fluid 42 (3) (2007) 403-411. https://doi.org/10.1007/s00348-006-0247-1