• Title/Summary/Keyword: Flow breaking

Search Result 205, Processing Time 0.028 seconds

Flow Regimes of Continuously Stratified Flow over a Double Mountain (두 개의 산악 위에서의 연속적으로 성층화된 흐름의 흐름 체계)

  • Han, Ji-Young;Kim, Jae-Jin;Baik, Jong-Jin
    • Atmosphere
    • /
    • v.17 no.3
    • /
    • pp.231-240
    • /
    • 2007
  • The flow regimes of continuously stratified flow over a double mountain and the effects of a double mountain on wave breaking, upstream blocking, and severe downslope windstorms are investigated using a mesoscale numerical model (ARPS). According to the occurrence or non-occurrence of wave breaking and upstream blocking, three different flow regimes are identified over a double mountain. Higher critical Froude numbers are required for wave breaking and upstream blocking initiation for a double mountain than for an isolated mountain. This means that the nonlinearity and blocking effect for a double mountain is larger than that for an isolated mountain. As the separation distance between two mountains decreases, the degree of flow nonlinearity increases, while the blocking effect decreases. A rapid increase of the surface horizontal velocity downwind of each mountain near the critical mountain height for wave breaking initiation indicates that severe downslope windstorms are enhanced by wave breaking. For the flow with wave breaking, the numerically calculated surface drag is much larger than theoretically calculated one because the region with the maximum negative perturbation pressure moves from the top to the downwind slope of each mountain as the internal jump propagating downwind occurs.

Wave Breaking Characteristics due to Shape and Plane Arrangement of the Submerged Breakwaters (잠제 제원 및 평면배치에 따른 쇄파특성)

  • Lee, Woo-Dong;Hur, Dong-Soo;Huh, Jung-Won
    • Journal of Ocean Engineering and Technology
    • /
    • v.24 no.1
    • /
    • pp.116-122
    • /
    • 2010
  • The aim of this study is to examine the effects of shape and plane arrangement of submerged breakwaters on 3-D wave breaking characteristics over them. First, the numerical model, which is able to consider the flow through a porous medium with inertial, laminar, and turbulent resistance terms, i.e. simulate directly WAve Structure Seabed/Sandy beach interaction, and can determine the eddy viscosity with a LES turbulent model in a 3-Dimensional wave field (LES-WASS-3D), has been validated by a comparison with Goda's equation for breaking wave heights. And then, using the numerical results, the wave breaking points over the crest of submerged breakwaters have been examined in relation to the shape and plane arrangement of submerged breakwaters. Moreover, the wave height distribution and upper flow around submerged breakwaters have been also discussed, as well as the distribution of the wave breaking points over the beach.

Numerical Simulations of Breaking Waves above a Two-Dimensional Submerged Circular Cylinder

  • Kim, Seung-Nam;Lee, Young-Gill
    • Journal of Ship and Ocean Technology
    • /
    • v.5 no.2
    • /
    • pp.50-61
    • /
    • 2001
  • In this paper, nonlinear interactions between water waves and a horizontally submerged circular cylinder are numerically simulated. In this case, the nonlinear interactions between them generated a wave breaking phenomenon. The wave breaking phenomenon plays an important role in the wave farce. Negative drifting forces are raised at shallow submerged cylinders under waves because of the wave breaking phenomenon. For the numerical simulation, a finite difference method based on the unsteady incompressible Navier-Stokes equations and the continuity equation is adopted in the rectangular grid system. The free surface is simulated with a computational simulation method of two-layer flow by using marker density. The results are compared with some existing computational and experimental results.

  • PDF

Numerical Study on Sub-Breaking of Free Surface Viscous Flow (자유표면 점성 유동의 준쇄파 수치연구)

  • Kwag, Seung-Hyun
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2003.10a
    • /
    • pp.226-231
    • /
    • 2003
  • The viscous interaction of stern wave is studied by simulating the free-surface flows, including sub-breaking phenomena around a high speed catamaran hull advancing on calm water. The Navier-Stokes equation is solved by a finite difference method where the body-fitted coordinate system, the wall function and the triple-grid system are invoked. The numerical appearance of the sub-breaking waves is qualitatively supported by the experimental observation They are also applied to study precisely on the stern flow of S-103 as to which extensive experimental data are available. For the catamaran, computations are carried out for the mono ana twin hulls.

  • PDF

Numerical Models of Wave-Induced Currents

  • Yoo, Dong-hoon
    • Korean Journal of Hydrosciences
    • /
    • v.1
    • /
    • pp.73-97
    • /
    • 1990
  • A literature review is made on the numerical models of wave-induced currents. The major processes of the flow system are wave breaking, bottom friction of combined wave-current flow and mixing processes primarily caused by wave breaking as well as the flow fields of waves and currents themselves. The survey is given to each item with great emphasis on numerical implication as well as physical mechanism. As noted is the importance in recent investigations, a brief treatment is also given on the currents driven by random or spectral waves.

  • PDF

A Study on Flow Structure of Breaking Wave through PIV Analysis (PIV기법을 활용한 쇄파의 유동구조 해석)

  • Jo, Hyo-Jae;Lee, Eon-Ju;Doh, Deog-Hee
    • Journal of Ocean Engineering and Technology
    • /
    • v.23 no.1
    • /
    • pp.43-47
    • /
    • 2009
  • This paper compares theoretical wave profile and particle kinematics with experimental results generated by a 2 D wave tank. Particle velocity fields of compound waves were acquired using a PIV technique. Synchronization was applied to acquire images of the wave fields, and the time gap between these images was controlled by the user. This technique was applied to investigate the wave breaking mechanism, and the wave profile and velocity distribution in a wave breaking field was obtained.

Effect of Boundary Condition History on the Symmetry Breaking Bifurcation of Wall-Driven Cavity Flows

  • Cho, Ji-Ryong
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.11
    • /
    • pp.2077-2081
    • /
    • 2005
  • A symmetry breaking nonlinear fluid flow in a two-dimensional wall-driven square cavity taking symmetric boundary condition after some transients has been investigated numerically. It has been shown that the symmetry breaking critical Reynolds number is dependent on the time history of the boundary condition. The cavity has at least three stable steady state solutions for Re=300-375, and two stable solutions if Re>400. Also, it has also been showed that a particular solution among several possible solutions can be obtained by a controlled boundary condition.

On the Viscous Flow Around Breaking Waves Generated by a Submerged Cylinder(Part 2 : Aspects of Viscous Flow) (몰수실린더에 의하여 생성되는 쇄파주의 점성유동의 고찰(제2부: 점성유동특성))

  • B.S. Hyun;Y.H. Shin
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.37 no.1
    • /
    • pp.91-98
    • /
    • 2000
  • The present paper is Part 2 of three-part paper for an experimental study on breaking waves generated by a submerged cylinder. Measurements of velocity and head loss profiles at the wakes of cylinder and breaker as well as the turbulent intensities in breaking region were made to elucidate the viscous aspects of breaking waves. Their mutual correlation is also investigated. It is found that the head loss profile is an excellent indicator of the strength and extent of breaker. Very high turbulent intensities measured at and just downstream of the breaker indicate the consequence of energy transfer of wave breaking into turbulence.

  • PDF

Sub- Breaking Analysis of Free Surface Flows by the Numerical Simulation (수치 시뮬레이션을 통한 자유표면 유동의 Sub-Breaking 해석)

  • Kwag, Seung-Hyun
    • Journal of Navigation and Port Research
    • /
    • v.28 no.8
    • /
    • pp.753-757
    • /
    • 2004
  • The free-surface flow is simulated to make clear the viscous interaction of stem waves and the sub-breaking phenomena around a high speed vehicle. The Navier-Stokes equation is solved by a finite difference method where the body-fitted coordinate system, the wall function and the triple-grid system are invoked They are applied to study precisely on the stem flow of S-103 as to which extensive experimental data are available. Computations are extended to the submerged revolutional body. The numerical result shows that the gradient of M/Us is greatly influenced by the submerged depth And the stem wave is influenced by the separation due to the bow wave.

Hyperbolicity Breaking Model and Drift-Flux Model for the Prediction of Flow Regime Transition after Inverted Annular Flow

  • Jeong, Hae-Yong;No, Hee-Cheon
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1995.10a
    • /
    • pp.456-461
    • /
    • 1995
  • The concept of hyperbolicity breaking is applied to predict the flow regime transition from inverted annular flow (IAF) to agitated inverted annular flow (AIAF). The resultant correlation has the similar form to Takenaka's empirical one. To validate the proposed model, it is applied to predict Takenaka's experimental results using R-113 refrigerant with four different tube diameters of 3, 5, 7 and 10 mm. The proposed model gives accurate predictions for the tube diameters of 7 and 10 min. As the tube diameter decreases, the differences between the predictions and the experimental results increase slightly. The flow regime transition from AIAF to dispersed flow (DF) is described by the drift flux model.

  • PDF