• 제목/요약/키워드: Flow blockage characteristics

검색결과 62건 처리시간 0.026초

공력음향학적 특성을 고려한 시로코 팬의 설계 방법 (Design Method of the Sirocco Fan Considering Aeroacoustic Performance Characteristics)

  • 이찬
    • 한국유체기계학회 논문집
    • /
    • 제13권2호
    • /
    • pp.59-64
    • /
    • 2010
  • A design method of Sirocco fan is developed for constructing 3-D impeller and scroll geometries, and for predicting both the aerodynamic performance and the noise characteristics of the designed fan. The aerodynamic blading design of fan is conducted by blade angle, camber line determinations and airfoil thickness distribution, and then the scroll geometry of fan is designed by using logarithmic spiral. The aerodynamic performance of designed fan is predicted by the meanline analysis with flow blockage, slip and pressure loss correlations. Based on the predicted performance data, fan noise is predicted by two models for cutoff frequency and broadband noise sources. The present predictions for the performance and the noise level of actual fans are well agreed with measurement results.

축대칭 캐비테이터에서 발생하는 자연 초월공동과 항력 특성에 대한 연구 (A Study on Natural Supercavitation and Drag Characteristics of Axisymmetric Cavitators)

  • 김지혜;정소원;안병권;전윤호
    • 대한조선학회논문집
    • /
    • 제53권6호
    • /
    • pp.465-472
    • /
    • 2016
  • A study was carried out to investigate typical features of natural supercavitation generated behind axisymmetric bodies such as disk and cone shaped cavitators. Main focuses of the study were to observe formation process of the supercavity and to measure drag forces acting on cavitators. Experiments were carried out at the cavitation tunnel of the Chungnam National University (CNU-CT), which has a capability to make sufficient flow speed for supercavitation experiments and to remove broken cavity bubbles coming back to the test section. Blockage effects on supercavity dimensions were evaluated and an effort was made to correlate tunnel experiments with unbounded flow. On the basis of experimental and numerical results, geometrical features of supercavities and characteristics of drag forces were examined and their relations were proposed.

터빈익렬 유로에서 2상 유동에 따른 삭마량 예측 (Prediction of Erosion Rate in Passages of a Turbine Cascade with Two-Phase flow)

  • 유만선;김완식;조형희
    • 유체기계공업학회:학술대회논문집
    • /
    • 유체기계공업학회 1999년도 유체기계 연구개발 발표회 논문집
    • /
    • pp.301-308
    • /
    • 1999
  • The present study investigates numerically particle laden flow through compressor cascades and a rocket nozzle. Engines are affected by various particles which are suspending in the atmosphere. Especially in the case of aircraft aviating in volcanic, industrial and desert region including many particles, each components of engine system are damaged severely. That damage modes are erosion of compressor blading and rotor path components, partial or total blockage of cooling passage and engine control system degradation. Numerical prediction and experimental data, erosion rates are predicted for two materials - ceramic, soft metal - on compressor blade surface. Aluminum oxide ($Al_2O_3$) Particles included in solid rocket propelant make ablative the rocket motor nozzle and imped the expansion processes of propulsion. By the definition of particle deposition efficiency, characteristics of particles impaction are considered quantitatively Stoke number is defined over the various particle sizes and particle trajectories are treated by Lagrangian approach. Particle stability is considered by definition of Weber number in rocket nozzle and particle breakup and evaporation is simulated in a rocket nozzle.

  • PDF

입구 경계층 두께가 축류 압축기 내부 유동에 미치는 영향 (I) - 허브 코너 실속 및 익단 누설 유동 - (Effects of the Inlet Boundary Layer Thickness on the Flow in an Axial Compressor (I) - Hub Corner Stall and Tip Leakage Flow -)

  • 최민석;박준영;백제현
    • 대한기계학회논문집B
    • /
    • 제29권8호
    • /
    • pp.948-955
    • /
    • 2005
  • A three-dimensional computation was conducted to understand effects of the inlet boundary layer thickness on the internal flow in a low-speed axial compressor operating at the design condition($\phi=85\%$) and near stall condition($\phi=65\%$). At the design condition, the flows in the axial compressor show, independent of the inlet boundary layer thickness, similar characteristics such as the pressure distribution, size of the hub comer-stall, tip leakage flow trajectory, limiting streamlines on the blade suction surface, etc. However, as the load is increased, the hub corner-stall grows to make a large separation region at the junction of the hub and suction surface for the inlet condition with thick boundary layers at the hub and casing. Moreover, the tip leakage flow is more vortical than that observed in case of the thin inlet boundary layer and has the critical point where the trajectory of the tip leakage flow is abruptly turned into the downstream. For the inlet condition with thin boundary layers, the hub corner-stall is diminished so it is indistinguishable from the wake. The tip leakage flow leans to the leading edge more than at the design condition but has no critical point. In addition to these, the severe reverse flow, induced by both boundary layer on the blade surface and the tip leakage flow, can be found to act as the blockage of flows near the casing, resulting in heavy loss.

가상경계 격자볼쯔만법을 이용한 벽면에 근접하여 이동하는 실린더주위의 유동해석 (Numerical Study on Flow over Moving Circular Cylinder Near the Wall Using Immersed Boundary Lattice Boltzmann Method)

  • 김형민
    • 대한기계학회논문집B
    • /
    • 제32권12호
    • /
    • pp.924-930
    • /
    • 2008
  • Immersed boundary method (IBM) is the most effective method to overcome the disadvantage of LBM (Lattice Boltzmann Method) related to the limitation of the grid shape. IBM also make LBM possible to simulate flow over complex shape of obstacle without any treatment on the curved boundary. In the research, IBLBM was used to perform LBM simulation of a flow over a moving circular cylinder to determine the flow feature and aerodynamics characteristic of the cylinder. To ascertain the applicability of IBLBM on the moving obstacle near the wall, it was first simulated for the case of the flow over a fixed circular cylinder in a channel and the results were compared against the solution of moving cylinder in the channel using IBLBM. The simulations were performed in a moderate range of Reynolds number at each moving cylinder to identify the flow feature and aerodynamic characteristics of circular cylinder in a channel. The drag and lift coefficients of the cylinder were calculated from the simulation results. We have numerically confirmed that the critical Reynolds number for vortex shedding is Re=50 and the result is the same as the case of fixed cylinder. As the cylinder approaching to a wall (${\gamma}<2.5$), the 2nd vortex is developed by interacting with the wall boundary-layer vorticity. When the cylinder is very closed to the wall, ${\gamma}<0.6$, the cylinder acts like blockage to block the flow between the cylinder and wall so that the vortex developed on the upper cylinder elongated and time averaged lifting and drag coefficients abruptly increase.

Validation of the numerical simulations of flow around a scaled-down turbine using experimental data from wind tunnel

  • Siddiqui, M. Salman;Rasheed, Adil;Kvamsdal, Trond
    • Wind and Structures
    • /
    • 제29권6호
    • /
    • pp.405-416
    • /
    • 2019
  • Aerodynamic characteristic of a small scale wind turbine under the influence of an incoming uniform wind field is studied using k-ω Shear Stress Transport turbulence model. Firstly, the lift and drag characteristics of the blade section consisting of S826 airfoil is studied using 2D simulations at a Reynolds number of 1×105. After that, the full turbine including the rotational effects of the blade is simulated using Multiple Reference Frames (MRF) and Sliding Mesh Interface (SMI) numerical techniques. The differences between the two techniques are quantified. It is then followed by a detailed comparison of the turbine's power/thrust output and the associated wake development at three tip speeds ratios (λ = 3, 6, 10). The phenomenon of blockage effect and spatial features of the flow are explained and linked to the turbines power output. Validation of wake profiles patterns at multiple locations downstream is also performed at each λ. The present work aims to evaluate the potential of the numerical methods in reproducing wind tunnel experimental results such that the method can be applied to full-scale turbines operating under realistic conditions in which observation data is scarce or lacking.

가스터빈 연소실 냉각을 위한 충돌제트/유출냉각기법에서 사각핀 설치에 따른 열/물질전달 특성 (Heat/Mass Transfer Characteristics in Impingement/Effusion Cooling System with Rectangular Fins for Combustor Liner Cooling)

  • 홍성국;이동호;조형희
    • 한국유체기계학회 논문집
    • /
    • 제8권4호
    • /
    • pp.39-47
    • /
    • 2005
  • The present study has been performed to investigate the influences of rectangular fins on heat transfer in an impingement/effusion cooling system with crossflow. To simulate the impingement/effusion cooling system with initial crossflow, two perforated plates are placed in parallel and staggered arrangements with a gap distance of 2 times of the hole diameter. The crossflow passes between the plates, and various rectangular fins are installed on the plates. Reynolds number based on the hole diameter is fixed to 10,000 and the flow rate of crossflow is changed from 0.5 to 1.5 times of that of the impinging jet. A naphthalene sublimation method is used to obtain the heat/mass transfer coefficients on the effusion plate. Also to analyze the flow characteristics, a numerical calculation is performed. When rectangular fins are installed, the flow and heat transfer pattern is changed greatly from the case without fins. In the injection hole region, the jet impinges on effusion plate without deflection and wall jet spreads symmetrically. In the effusion region, the crossflow accelerates due to the decrease of cross-sectional area in the channel. Local heat/mass transfer coefficients are enhanced significantly compared to the case without fins. As the blowing ratio increases, the effect of rectangular fins against the crossflow becomes more significant and then the higher average heat/mass transfer coefficients are obtained than the case without fins. However, the increase of blockage effect gives more pressure loss in the channel.

낮은 레이놀즈 수에서 벽면에 근접하여 이동하는 실린더 주위의 유동해석 (Flow Analysis over Moving Circular Cylinder Near the Wall at Moderate Reynolds Number)

  • 곽승현
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제36권8호
    • /
    • pp.1091-1096
    • /
    • 2012
  • 유한체적법을 기반으로 나비에 스톡스 방정식을 비구조격자로 풀어 실린더 주위의 공력특성을 규명하였다. 보텍스, 속도, 압력, 잔차, 항력계수 등의 데이터를 가지고 분석하였고 레이놀즈 수는 50, 100이다. 유동특성은 Re>50에서 주기적으로 진동하는 소용돌이를 후류에 형성하며 이 현상은 이동하는 실린더에서도 유사한 현상을 보여 주었다. 지면효과는 실린더 위쪽에서 형성된 소용돌이가 벽면에 근접할수록 실린더의 후방으로 길게 늘어나는 형상을 보이고, 실린더와 근접벽면 사이의 유속이 정체되어 실린더와 벽면 사이의 간격이 0.6 에서는 근접 평판과 실린더 사이의 유동이 거의 끊겨짐을 알 수 있었다. 본 수치계산의 검증을 위하여 항력계수를 타 연구결과와 비교하였다.

A Study on the Aerodynamic Drag of Transonic Vehicle in Evacuated Tube Using Computational Fluid Dynamics

  • Kang, Hyungmin;Jin, Yingmei;Kwon, Hyeokbin;Kim, Kyuhong
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제18권4호
    • /
    • pp.614-622
    • /
    • 2017
  • The characteristics of aerodynamic drag for Transonic Vehicle in Evacuated Tube was investigated using computational fluid dynamics. At first, parametric study on the system was performed according to the Mach number of the vehicle's speed ($Mach_v$), evacuated pressure of the tube ($Pre_t$), and blockage ratio (BR) between the vehicle and tube via axisymmetric flow analysis; the $Mach_v$ ranged from 0.3 to 1.0. The $Pre_t$ was 100, 1,000 and 10,000 Pa and the BR was 0.1, 0.2, and 0.4. In the calculations, the aerodynamic drag of the vehicle was larger when the BR and the pressure became larger. Concerning the $Mach_v$, the drag coefficient ($C_d$) became the maximum when the $Mach_v$ was near the Kantrowitz limit and decreased, which showed the typical transonic flow pattern. Then, three dimensional flow analysis was performed by changing the $Mach_v$ from 0.3 to 1.0 and setting the BR and the $Pre_t$ as 0.34 and 100 Pa, respectively by referring the Hyperloop Alpha documentation. From the calculations, the $C_d$ from three dimensional flow simulations were somewhat larger than those of axisymmetric ones because of the eccentricity of the vehicle inside the tube. However, the pattern of $C_d$ according to the $Mach_v$ was compatible with that of axisymmetric ones.

Endplate effect on aerodynamic characteristics of three-dimensional wings in close free surface proximity

  • Jung, Jae Hwan;Kim, Mi Jeong;Yoon, Hyun Sik;Hung, Pham Anh;Chun, Ho Hwan;Park, Dong Woo
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제4권4호
    • /
    • pp.477-487
    • /
    • 2012
  • We investigated the aerodynamic characteristics of a three-dimensional (3D) wing with an endplate in the vicinity of the free surface by solving incompressible Navier-Stokes equations with the turbulence closure model. The endplate causes a blockage effect on the flow, and an additional viscous effect especially near the endplate. These combined effects of the endplate significantly reduce the magnitudes of the velocities under the lower surface of the wing, thereby enhancing aerodynamic performance in terms of the force coefficients. The maximum lift-to-drag ratio of a wing with an endplate is increased 46% compared to that of wing without an endplate at the lowest clearance. The tip vortex of a wing-with-endplate (WWE) moved laterally to a greater extent than that of a wing-without-endplate (WOE). This causes a decrease in the induced drag, resulting in a reduction in the total drag.