DOI QR코드

DOI QR Code

Numerical Study on Flow over Moving Circular Cylinder Near the Wall Using Immersed Boundary Lattice Boltzmann Method

가상경계 격자볼쯔만법을 이용한 벽면에 근접하여 이동하는 실린더주위의 유동해석

  • 김형민 (경기대학교 기계시스템공학과)
  • Published : 2008.12.01

Abstract

Immersed boundary method (IBM) is the most effective method to overcome the disadvantage of LBM (Lattice Boltzmann Method) related to the limitation of the grid shape. IBM also make LBM possible to simulate flow over complex shape of obstacle without any treatment on the curved boundary. In the research, IBLBM was used to perform LBM simulation of a flow over a moving circular cylinder to determine the flow feature and aerodynamics characteristic of the cylinder. To ascertain the applicability of IBLBM on the moving obstacle near the wall, it was first simulated for the case of the flow over a fixed circular cylinder in a channel and the results were compared against the solution of moving cylinder in the channel using IBLBM. The simulations were performed in a moderate range of Reynolds number at each moving cylinder to identify the flow feature and aerodynamic characteristics of circular cylinder in a channel. The drag and lift coefficients of the cylinder were calculated from the simulation results. We have numerically confirmed that the critical Reynolds number for vortex shedding is Re=50 and the result is the same as the case of fixed cylinder. As the cylinder approaching to a wall (${\gamma}<2.5$), the 2nd vortex is developed by interacting with the wall boundary-layer vorticity. When the cylinder is very closed to the wall, ${\gamma}<0.6$, the cylinder acts like blockage to block the flow between the cylinder and wall so that the vortex developed on the upper cylinder elongated and time averaged lifting and drag coefficients abruptly increase.

Keywords

References

  1. Chen, S. and Doolen, G., 1998, "Lattice Boltzmann Method for Fluid Flows," Ann. rev. Fluid Mech., Vol. 30, pp. 329-364 https://doi.org/10.1146/annurev.fluid.30.1.329
  2. Renwei Mei, Li_shi Luo and Wei Shyy, 2000, "An Accurate Curved Boundary Treatment in the Lattice Boltzmann Method," ICASE Report, No. 2000-6
  3. Lallemand, P. and Luo, L.-S., 2003, "Lattice Boltzmann Method for Moving Boundary," Journal of Computational Physics, Vol. 184. pp. 406-421 https://doi.org/10.1016/S0021-9991(02)00022-0
  4. Kim, H. M. and Jhon, M. S., 2007, "Numerical Study on Flow Over Oscillating Circular Cylinder Using Curved Moving Boundary Treatment," KSME Journal B, Vol. 31, No. 11, pp. 895-903 https://doi.org/10.3795/KSME-B.2007.31.11.895
  5. Frisch, U., Hasslacher, B. and Pomeau, Y. 1986, "Lattice-gas Automata for The Navier-Stokes Equations," Phys. Rev. Lett. Vol. 56, pp. 1505-1508 https://doi.org/10.1103/PhysRevLett.56.1505
  6. McNamara, G. and Zanetti, G., 1988, "Use of the Boltzmann Equation to Simulate Lattice-Gas Automata," Phys. Rev. Lett, Vol. 61, pp. 2332-2335 https://doi.org/10.1103/PhysRevLett.61.2332
  7. Higuera, F. and Jimenez, J., 1989, "Boltzmann Approach to Lattice Gas Simulations," Europhys. Lett., Vol. 9, pp. 663-668 https://doi.org/10.1209/0295-5075/9/7/009
  8. Koelman, JMVA, 1991, "A Simple Lattice Boltzmann Scheme for Navier-Stokes Fluid Flow," Europhys. Lett., Vol. 15, pp. 603-607 https://doi.org/10.1209/0295-5075/15/6/007
  9. Qian, YH., 1990, "Lattice Gas and Lattice Kinetic Theory Apply to Navier-Stokes Equation," Ph'D Thesis, University et Peirre Marie Curie, Paris
  10. Bhatnagar PL, Gross EP, Krook M., 1954, "A Model for Collision Processes in Gases. I:Small Amplitude Processes in Charged and Neutral One-Component System," Phys. Rev. Vol. 94, pp. 511-525 https://doi.org/10.1103/PhysRev.94.511
  11. Chen, H., 1993, "Discrete Boltzmann Systems and Fluid Flow," Comp. Phys., Vol. 7, pp. 632-637 https://doi.org/10.1063/1.4823237
  12. He, X., Zou, Q., Luo, L.-S. and Dembo, M., 1997, "Analytic Solutions of Simple Flow and Analysis of Non-Slip Boundary Conditions for the Lattice Boltzmann BGK Model," J. Stat. Phys., Vol. 87, pp. 115-136 https://doi.org/10.1007/BF02181482
  13. Zou Qisu and He Xiaoyi, 1997, "On Pressure and Velocity Boundary Conditions For The Lattice Boltzmann BGK Model," Phys. Fluids, Vol. 9, No. 6, pp. 1591-1598 https://doi.org/10.1063/1.869307
  14. Buick, JM and Grated CA. 2000, "Gravity in a Lattice Boltzmann Model," Physical Review E, Vol. 61(5), pp. 5307-5320 https://doi.org/10.1103/PhysRevE.61.5307
  15. Mei, R., Yu, D., Shyy, W. and Luo, L.S., 2002, “Force Evaluation in the Lattice Boltzmann Method Involving Curved Geometry,” Phys.Rev. E, Vol. 65, No.041203 https://doi.org/10.1103/PhysRevE.65.041203
  16. Schafer, M. and Turek, S., 1996, "Flow Simulation with High-Performance Computer II," Notes in Numerical Fluid Mechanics, Vol. 52, p. 547