• 제목/요약/키워드: Flow behavior model

검색결과 1,113건 처리시간 0.026초

유동 모드 댐퍼에서의 Herschel-Bulkley 모델의 유용한 해법 (Useful Guide to Solve Herschel-Bulkley Model in a Flow Mode Damper)

  • 이덕영;박성태
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2003년도 추계학술대회논문집
    • /
    • pp.784-787
    • /
    • 2003
  • Electrorheological(ER) and magnetorheological(MR) fluid-based dampers are typically analyzed using Bingham-plastic shear model under quasi-steady fully developed flow conditions. A Herschel-Bulkley constitutive shear flow relationship is that the linear shear stress vs. strain rate behavior of Bingham model is replaced by a shear stress that is assumed to be proportional to a power law of shear rate. This power is called the flow behavior index. Depending on the value of the flow behavior index number, varying degrees of post-yield shear thickening or thinning behavior can be analyzed. But it is not practical to analyze the damping force in a flow mode damper using Herschel-Bulkley model because it is needed to solve a polynomial equation. A useful guide is suggested to analyze the damping force in a damper using the Herschel-Bulkley model.

  • PDF

반고형제제의 유동특성에 관한 연구 (제2보) : 바셀린의 온도의존성 유동거동 (Studies on The Flow Properties of Semi-Solid Dosage Forms (II) : Temperature-Dependent Flow Behavior of Vaseline)

  • 김정화;송기원;장갑식;이장우;이치호
    • 약학회지
    • /
    • 제41권1호
    • /
    • pp.38-47
    • /
    • 1997
  • Using a concentric cylinder type, rheometer. the steady shear flow properties of vaseline were measured over the temperature range of 20~70${\circ}$C. In this paper, the shea rate and temperature dependencies of its flow behavior were investigated and the validity of some flow models was examined. In addition, the flow characteristics over a wide temperature range were quantitatively evaluated by calculating the various material parameters. Main findings obtained from this study can be summarized as follows: (1) At relatively lower temperature range, vaseline is a plastic fluid with a yield stress and its flow behavior shows shear-thinning characteristics. (2) As the temperature increases, the value of a yield stress and the degree of shear-thinning become smaller, consequently, the Newtonian flow behavior occurs at a lower shear rate range. (3) At temperature range lower than 45${\circ}$C, the flow behavior shows much stronger temperature dependence, and a larger activation energy is needed for flow. (4) The Herschel-Bulkley model is the most effective one g$^3$ to predict the flow behavior of vaseline having a yield stress. The validity of the Bingham and Casson models becomes more available with increasing temperature. The flow behavior of vaseline at temperature range higher than 45${\circ}$C can be perfectly described by the Newton model.

  • PDF

반고형제제의 유동특성에 관한 연구 (제1보) : 치약의 정상전단 유동거동 (Studies on the Flow Properties of Semi-Solid Dosage Forms (I) : Steady Shear Flow Behavior of Toothpastes)

  • 김정화;송기원;이장우;이치호
    • Journal of Pharmaceutical Investigation
    • /
    • 제25권3호
    • /
    • pp.213-221
    • /
    • 1995
  • The steady shear flow properties of six kinds of commercial toothpastes were measured using a concentric cylinder type rheometer. In this paper, the shear rate and temperature dependencies of their flow behavior were investigated and the validity of the Casson and Herschel-Bulkley models was examined. Further, the flow properties over a wide temperature range were quantitatively evaluated by calculating the various material parameters. Main results obtained from this study can be summarized as follows: (1) Toothpastes are plastic fluids with a yield stress and their flow behavior shows shear-thinning characteristics. (2) With increasing temperature, the degree of shear-thinning becomes weaker and the Newtonian flow behavior occurs at a lower shear rate range. (3) The Herschel-Bulkley model is more effective than the Casson model in predicting their flow behavior. (4) As the temperature increases, the yield stress, plastic viscosity and consistency index become smaller, on the contrary, the flow behavior index becomes larger.

  • PDF

Large amplitude oscillatory shear behavior of the network model for associating polymeric systems

  • Ahn, Kyung-Hyun;Kim, Seung-Ha;Sim, Hoon-Goo;Lee, Seung-Jong
    • Korea-Australia Rheology Journal
    • /
    • 제14권2호
    • /
    • pp.49-55
    • /
    • 2002
  • To understand the large amplitude oscillatory shear (LAOS) behavior of complex fluids, we have investigated the flow behavior of a network model in the LAOS environment. We applied the LAOS flow to the model proposed by Vaccaro and Marrucci (2000), which was originally developed to describe the system of associating telechelic polymers. The model was found to predict at least three different types of LAOS behavior; strain thinning (G' and G" decreasing), strong strain overshoot (G' and G" increasing followed by decreasing), and weak strain overshoot (G' decreasing, G" increasing followed by decreasing). The overshoot behavior in the strain sweep test, which il often observed in some complex fluid systems with little explanation, could be explained in terms of the model parameters, or in terms of the overall balance between the creation and loss rates of the network junctions, which are continually created and destroyed due to thermal and flow energy. This model does not predict strain hardening behavior because of the finitely extensible nonlinear elastic (FENE) type nonlinear effect of loss rate. However, the model predicts the LAOS behavior of most of the complex fluids observed in the experiments.he experiments.

포텐셜 유동 해석을 이용한 토크 컨버터의 형상설계 파라미터들의 민감도 해석 (Sensitivity Analysis of Shape Design Parameters of a Toque Converter Using Potential Flow)

  • 김준양;이장무;박찬일;임원식
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1994년도 추계학술대회 논문집
    • /
    • pp.924-929
    • /
    • 1994
  • In using a performance model of a torque converter determined by its gemetric condition, it is possible that the analysis of two arbitrary converters produces the the same results because of the same value of equivalent parameters despite their different shapes. Therefore, it is necessary to understand the effect of shape factor on dynamic perfomance, and equivalent parameters reoresenting a performace model of a converter should into its defined by the behavior of flow field. In this study, torus flow of a torque converter is changed into its equivalent system defined by the behavior of flow, and govering equations for the system are presented and used for analysis. Equivalent parameters are obtained from the results of flow analysis and are compared with parameters of one dimensional performance model. The influence that shape change of a converter has on the behavior of flow and the equivalent parameters is studied qualitatively.

  • PDF

Development of Artificial Neural Network Model for Simulating the Flow Behavior in Open Channel Infested by Submerged Aquatic Weeds

  • Abdeen Mostafa A. M.
    • Journal of Mechanical Science and Technology
    • /
    • 제20권10호
    • /
    • pp.1576-1589
    • /
    • 2006
  • Most of surface water ways in Egypt suffer from the infestation of aquatic weeds especially submerged ones which cause lots of problems for the open channels and the water structures such as increasing water losses, obstructing the water flow, and reducing the efficiency of the water structures. Accurate simulation of the water flow behavior in such channels is very essential for water distribution decision makers. Artificial Neural Network (ANN) has been widely utilized in the past ten years in civil engineering applications for the simulation and prediction of the different physical phenomena and has proven its capabilities in the different fields. The present study aims towards introducing the use of ANN technique to model and predict the impact of the existence of submerged aquatic weeds on the hydraulic performance of open channels. Specifically the current paper investigates utilizing the ANN technique in developing a simulation and prediction model for the flow behavior in an open channel experiment that simulates the existence of submerged weeds as branched flexible elements. This experiment was considered as an example for implementing the same methodology and technique in a real open channel system. The results of current manuscript showed that ANN technique was very successful in simulating the flow behavior of the pre-mentioned open channel experiment with the existence of the submerged weeds. In addition, the developed ANN models were capable of predicting the open channel flow behavior in all the submerged weeds' cases that were considered in the ANN development process.

LTS Semantics Model of Event-B Synchronization Control Flow Design Patterns

  • Peng, Han;Du, Chenglie;Rao, Lei;Liu, Zhouzhou
    • Journal of Information Processing Systems
    • /
    • 제15권3호
    • /
    • pp.570-592
    • /
    • 2019
  • The Event-B design pattern is an excellent way to quickly develop a formal model of the system. Researchers have proposed a number of Event-B design patterns, but they all lack formal behavior semantics. This makes the analysis, verification, and simulation of the behavior of the Event-B model very difficult, especially for the control-intensive systems. In this paper, we propose a novel method to transform the Event-B synchronous control flow design pattern into the labeled transition system (LTS) behavior model. Then we map the design pattern instantiation process of Event-B to the instantiation process of LTS model and get the LTS behavior semantic model of Event-B model of a multi-level complex control system. Finally, we verify the linear temporal logic behavior properties of the LTS model. The experimental results show that the analysis and simulation of system behavior become easier and the verification of the behavior properties of the system become convenient after the Event-B model is converted to the LTS model.

유한요소법에 의한 2차원 하천 흐름 모형의 개발 (Two-Dimensional River Flow Analysis Modeling By Finite Element Method)

  • 한건연;김상호;김병현;최승용
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2006년도 학술발표회 논문집
    • /
    • pp.425-429
    • /
    • 2006
  • The understanding and prediction of the behavior of flow in open channels are important to the solution of a wide variety of practical flow problems in water resources engineering. Recently, frequent drought has increased the necessity of an effective water resources control and management of river flows for reserving instream flow. The objective of this study is to develop an efficient and accurate finite element model based on Streamline Upwind/Petrov-Galerkin(SU/PG) scheme for analyzing and predicting two dimensional flow features in complex natural rivers. Several tests were performed in developed all elements(4-Node, 6-Node, 8-Node elements) for the purpose of validation and verification of the developed model. The U-shaped channel of flow and natural river of flow were performed for tests. The results were compared with these of laboratory experiments and RMA-2 model. Such results showed that solutions of high order elements were better accurate and improved than those of linear elements. Also, the suggested model displayed reasonable velocity distribution compare to RMA-2 model in meandering domain for application of natural river flow. Accordingly, the developed finite element model is feasible and produces reliable results for simulation of two dimensional natural river flow. Also, One contribution of this study is to present that results can lead to significant gain in analyzing the accurate flow behavior associated with hydraulic structure such as weir and water intake station and flow of chute and pool.

  • PDF

실지형을 지나는 대기유동에 대한 수치모델의 검증 (Validation of Numerical Model for the Wind Flow over Real Terrain)

  • 김현구;이정묵;노유정
    • 한국대기환경학회지
    • /
    • 제14권3호
    • /
    • pp.219-228
    • /
    • 1998
  • In the present investigation, a numerical model developed for the prediction of the wind flow over complex terrain is validated by comparing with the field experiments. For the solution of the Reynolds - Averaged Clavier- stokes equations which are the governing equations of the microscale atmospheric flow, the model is constructed based on the finite-volume formulation and the SIMPLEC pressure-correction algorithm for the hydrodynamic computation. The boundary- fitted coordinate system is employed for the detailed depiction of topography. The boundary conditions and the modified turbulence constants suitable for an atmospheric boundary- layer are applied together with the k- s turbulence model. The full- scale experiments of Cooper's Ridge, Kettles Hill and Askervein Hill are chosen as the validation cases . Comparisons of the mean flow field between the field measurements and the predicted results show good agreement. In the simulation of the wind flow over Askervein Hill , the numerical model predicts the three dimensional flow separation in the downslope of the hill including the blockage effect due to neighboring hills . Such a flow behavior has not been simulated by the theoretical predictions. Therefore, the present model may offer the most accurate prediction of flow behavior in the leeside of the hill among the existing theoretical and numerical predictions.

  • PDF

반고형 식품류의 정상유동특성 및 동적 점탄성 (Steady Shear Flow and Dynamic Viscoelastic Properties of Semi-Solid Food Materials)

  • 송기원;장갑식
    • 유변학
    • /
    • 제11권2호
    • /
    • pp.143-152
    • /
    • 1999
  • 본 연구에서는 Rheometrics Fluids Spectrometer(RFS II)를 사용하여 세 종류의 상용 반고형 식품(마요네즈, 토마토 케찹, 와사비)의 정상유동특성 및 소진폭 전단변형하에서의 동적 점탄성을 광범위한 전단속도와 각주파수 영역에서 측정하였다. 이들 측정결과로부터 정상유동특성의 전단속도 의존성 및 동적 점탄성의 각주파수 의존성을 보고하였다. 그리고 항복응력의 항을 갖는 몇 가지 점소성 유동모델을 사용하여 정상유동특성을 정량적으로 평가하고 이들 모델의 적용성을 비교.검증하였다. 나아가서 수정된 형태의 지수법칙 관계식을 도입하여 정상유동특성(비선형 거동)과 동적 점탄성(선형 거동)간의 상관관계에 대해 검토하였다. 이상의 연구를 통해 얻어진 결과를 요약하면 다음과 같다. (1) 반고형 식품류는 상당한 크기의 항복응력을 갖는 점소성 물질로서 전단속도가 증가할수록 정상류점도가 급격히 감소하는 shear-thinning 거동을 나타낸다. (2) Herschel-Bulkley 모델, Mizrahi-Berk 모델 및 Heinz-Casson 모델은 반고형 식품류의 정상유동거동을 잘 기술할 수 있다. 이들 중에서도 Heinz-Casson 모델이 가장 우수한 적용성을 갖는다 (3) 반고형 식품류는 임계 전단속도를 경계로 shear-thinning 특성이 변화한다. 즉 낮은 전단속도에 비해 높은 전단속도 영역에서 분산입자 응집체의 구조파괴가 더욱 활발하게 진행되어 보다 현저한 shear-thinning 특성을 나타낸다. (4) 저장 탄성률 및 손실탄성률은 양자 모두 각주파수가 증가할수록 점차로 증가하나 각주파수 의존성은 그다지 크지 않다. 또한 광범위한 각주파수 영역에서 탄성적 성질이 점성적 성질에 비해 보다 우세하게 나타난다. (5) 정상류점도, 동적점도 및 복소점도는 모두 power-law 모델의 거동을 잘 만족한다. 또한 정상유동특성과 동적 점탄성간의 상관관계는 수정된 형태의 지수법칙 관계식에 의해 잘 기술될 수 있다.

  • PDF