
 

www.kips.or.kr                                                                                                 Copyright© 2019 KIPS 

       
 
         

 
 
 

LTS Semantics Model of Event-B Synchronization 
Control Flow Design Patterns  

 
Han Peng*, Chenglie Du*, Lei Rao**, and Zhouzhou Liu* 

 
 
Abstract 
The Event-B design pattern is an excellent way to quickly develop a formal model of the system. Researchers 
have proposed a number of Event-B design patterns, but they all lack formal behavior semantics. This makes 
the analysis, verification, and simulation of the behavior of the Event-B model very difficult, especially for the 
control-intensive systems. In this paper, we propose a novel method to transform the Event-B synchronous 
control flow design pattern into the labeled transition system (LTS) behavior model. Then we map the design 
pattern instantiation process of Event-B to the instantiation process of LTS model and get the LTS behavior 
semantic model of Event-B model of a multi-level complex control system. Finally, we verify the linear temporal 
logic behavior properties of the LTS model. The experimental results show that the analysis and simulation of 
system behavior become easier and the verification of the behavior properties of the system become convenient 
after the Event-B model is converted to the LTS model. 
 
Keywords 
Behavior Semantic, Design Pattern Instantiation, Event-B Design Patterns, Labeled Transition System 
 
 

 

1. Introduction 

Event-B [1] is a formal language that is closest to software engineering. Its ideas of progressive 
refinement and ability of automatic code generation not only ensure the correctness and consistency of 
the model but also ensure the correctness of the final code. In order to enhance the reusability of the 
Event-B model to better support the software development process, the researchers proposed the Event-
B design pattern [2], that is, the reusable Event-B models. The Event-B design pattern is similar to design 
pattern in software engineering but extends reusability to the correctness of the model, that is to say, the 
Event-B design patterns which have been verified can be instantiated as a part of the larger software model 
and do not need to be constructed it again and prove its correctness again. Now, the Event-B design 
pattern has been applied to embedded control systems [1], service-oriented architecture [3], software 
product line engineering [4,5], wireless sensor networks [6], and many other fields. 

However, as a data-oriented modeling language, Event-B focuses only on the consistency of refinement, 
while it has limitations in the preservation and verification of behavioral properties. This is mainly 
because Event-B has no behavior semantics, which makes it difficult for the modeler to analyze and verify 

※ This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0/) which 

permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited. 

Manuscript received September 29, 2017; first revision March 13, 2018; accepted May 17, 2018. 
Corresponding Author: Han Peng (hansbeng2016@gmail.com) 
* School of Computer Science, Northwestern Polytechnical University, Xi’an, China (hansbeng2016@gmail.com, {ducl, liuzhouzhou}@ 

mail.nwpu.edu.cn) 
** School of Software and Microelectronics, Northwestern Polytechnical University, Xi’an, China (rl15829292198@gmail.com) 

J Inf Process Syst, Vol.15, No.3, pp.570~592, June 2019 ISSN 1976-913X (Print) 
https://doi.org/10.3745/JIPS.01.0043 ISSN 2092-805X (Electronic) 



Han Peng, Chenglie Du, Lei Rao, and Zhouzhou Liu 
 

 

J Inf Process Syst, Vol.15, No.3, pp.570~592, June 2019 | 571 

the linear temporal logic (LTL) behavior properties of the Event-B model directly. But it is well known 
that we should do more stringent verification on those components that will be more likely to be reused. 
Unfortunately, although the Event-B design pattern has been widely used, there is little research on its 
behavior semantics and verification of its behavioral properties. 

In this paper, we propose a method to model the Event-B synchronize control design patterns using 
the labeled transition system (LTS). In detail, the contributions of this work are as follows. 
 We analyzed in detail the event order of the four Event-B synchronous control flow patterns, and 

revealed the complexity of the Event-B control flow design patterns as well as the difficulty to 
characterize it. 

 We proposed the concept of “atomic LTS” and used this concept to model the four synchronous 
control flow patterns. We proposed three transformation rules to construct “atomic LTS” and used 
rigorous logic derivation to prove the correctness of our transformation rules. 

 We constructed an LTS model of a complex multi-level control system using the LTS semantic 
model of the Event-B synchronous control flow design patterns. Our approach is to map the 
instantiation process of the Event-B model to the instantiation process of its corresponding LTS 
semantic model, which guarantees the behavioral equivalence between the source model (i.e., the 
Event-B model) and the target model (that is, the LTS semantic model). 

 We characterized the functional requirements and safety requirements of the complex multi-level 
control system using the LTL formula, and test these LTL behavioral properties of the target model 
using model checking tools to evaluate the feasibility of our method. 

The rest of this paper is organized as follows: Section 2 discusses some related work and their flaws. In 
Section 3, we explain the principle of the Event-B synchronous control flow design pattern. Section 4 
proposes three translation rules and gives the LTS behavior semantic model of the Event-B synchronous 
control pattern. Section 5 proposes the method to map the design pattern instantiation process of Event-
B model to the instantiation process of LTS model and builds a complex control system model using this 
method. Section 6 gives the experimental results and discusses it. Section 7 concludes our work. 

 
 

2. Related Work and Problem Definition 

Event-B design pattern: Event-B design pattern is a reusable formal model that is different from the 
design pattern in the software engineering. The idea of the Event-B design pattern is to construct and 
prove the formal models of the relatively small problems in order to reuse these small formal models to 
construct the larger model. In this way, the modeler does not have to prove the correctness of these small 
models again. In other words, by using the Event-B design pattern, we can reuse not only the design 
strategy of the model but also the correctness of the model. Therefore, the direct benefit of the Event-B 
design pattern is that it can greatly reduce proof cost of the formal model. 

Many Event-B design patterns have been proposed in recent years. For example, Silva and his colleague 
[7,8] proposed the Event-B design pattern and the “Generic Instantiation” approach and developed the 
Event-B model of the safety critical subway system. Yeganefard et al. [9] proposed the “MCMC” design 
patterns of Event-B model to model the generic formal components of the monitored, controlled, mode 
and commanded (MCMC) architecture. MCMC design patterns have been used to construct the Event-
B model of cruise control system [10], automotive lane departure warning system [11], and lane centering 



LTS Semantics Model of Event-B Synchronization Control Flow Design Patterns 

 

572 | J Inf Process Syst, Vol.15, No.3, pp.570~592, June 2019 

controller [12]. The MCMC design pattern reuses the static architecture of the model, allowing the 
modeler to use this architecture directly when solving similar problems. 

Modeling control flow of Event-B: How to characterize the control flow (i.e., event order)of Event-B 
code clearly, has always been a concern of researchers  because it enables researchers to model and analyze 
the system’s behavior and further verify its behavioral properties (such as LTL properties). Fathabadi et 
al. [13,15] proposed a method named “atomic decomposition” which used a tree structure based on the 
Jackson structure diagram (JSD) to express the relationship between the abstract event and the 
subsequent concrete events as well as the order of concrete events. This method is used to construct the 
Event-B model of the multimedia protocol system [15] and the Space Craft system [16]. Iliasov [17] 
proposed a method named Flow language which uses ena, dis, and fis to express the order of the events, 
and uses the Flow plug-in to provide graphical symbols to model the event orders. Schneider et al. [18-
20] proposed the CSP||B method, using communication sequential process (CSP) to express the control 
flow part of system, and using pure Event-B model to express the data processing part of system (that is, 
the computation part). Finally, he transforms the CSP model into the Event-B code and combines it with 
the computation part to form a complete Event-B model. We can verify the behavior of final Event-B 
model through verifying the behavior of CSP model. The inventor of Event-B, Abrial [1] proposed four 
synchronous control flow patterns, including strong synchronization pattern, weak synchronization 
pattern, strong-weak synchronization pattern, and strong-strong synchronization pattern. Its main 
purpose is to express the basic sub-problem in the reactive system, that is, the “trigger-response” 
relationship between components. We can use these patterns to establish the Event-B model of complex 
control system easily. 

The LTL property of Event-B model: As we mentioned, one of the goals of modeling the control flow 
of Event-B code is to verify its behavioral properties. Literature in this area is rare. Current research is 
limited to how to preserve its LTL attributes during the refinement process of the Event-B model. For 
example, Schneider et al. [21] proposed a set of refinement strategies that can preserve the safety 
properties of Event-B models in the refinement chain. Further, Schneider et al. [22] extends this idea to 
the preservation of liveness properties and derives the refinement strategy that can preserve the temporal 
logic properties of the Event-B model throughout the refinement chain. Recently, Hoang et al. [23] gave 
more general results, which relax the constraints between adjacent refinement levels of Event-B model 
while ensuring that the LTL properties continue to hold during the refinement process. 

 
2.1 Problems of Existing Research 
 

Although many works have been done on the modeling of Event-B control flow and the LTL properties 
of Event-B, there are still some problems in current research. 

First, these works cannot express Event-B’s control flow explicitly. Although the “atomic 
decomposition” method claims that it can express the control flow of Event-B, the control flow is not 
visible in its tree structure. Flow method uses the relationship between events to express control flow, 
which is contrary to the style of the traditional transition system. The CSP||B method works best in this 
respect but still cannot express the control flow of a complete Event-B model. The synchronous control 
flow design pattern itself is expressed using Event-B code. The flaws in these methods make it impossible 
for people to clearly observe and analyze the behavior of the model. 

Second, the results of these works are difficult to translate directly into LTS models. LTS is a traditional 



Han Peng, Chenglie Du, Lei Rao, and Zhouzhou Liu 
 

 

J Inf Process Syst, Vol.15, No.3, pp.570~592, June 2019 | 573 

and authoritative behavioral semantic model, which is also the theoretical basis of LTL model checking. 
However, the results of various Event-B control flow modeling methods, such as atomic decomposition 
and Flow methods, cannot be directly converted to LTS models. Although the CSP has formal behavioral 
semantics and can be directly mapped to the LTS model, the CSP||B method only expresses a part (that 
is, the control flow) of the Event-B model using the CSP. Therefore, using CSP||B, we cannot get a 
complete LTS model of Event-B model. 

Finally, these works do not support verification of the LTL property of the Event-B model. Although 
Schneider et al. [21,22] and Hoang et al. [23] studied the behavioral semantics and LTL properties 
preservation of Event-B, their constraints on the refinement strategy of the Event-B model will limit the 
exploration of the design space for the Event-B model. 

In conclusion, the available control flow modeling methods have some limitations and do not support 
verification of LTL properties. In contrast, we propose an explicit way to model Event-B control flow and 
give its LTS behavioral semantics that can support LTL properties verification. 

 
 

3. Event-B Synchronous Control Flow Design Patterns 

Event-B is an event-based formal modeling language whose core concept is event. The general form of 
an event is as follows: 

 

 
An event is made up of guards and actions. An event e is enabled when its guards are satisfied, and 

actions express the effect of the event e, that is, the modification of the variables. Event-B uses variables 
to express the state of the system and perform the state changes with events. 

Abrial [1] proposed four synchronous control flow patterns to abstract the basic “trigger-response” 
relationship in a multi-level control system. The basic principle of “trigger-response” relationship is 
shown in Fig. 1. 

 

Fig. 1. The “trigger-response” relationship of the reactive system. 
 
In Fig. 1, the actuator executes the action event, and modifies its own state. The reactor is enabled after 

the action event and can execute the reaction event. 
In the synchronous control flow design pattern, the variables a, b and r, s are used to represent the state 

of the actuator and the reactor, respectively. The x_on event changes the value of the variable x from 0 to 

1, and the event x_off changes the value of the variable x from 1 to 0, where x∈{a, r, b, s}. We refer to a 
pair of “actuators – reactors” as a “subsystem”. 

For the sake of discussion, we first consider an Event-B model including the actuator a and reactor r 
with no synchronization control relationship, named non_control_model: 



LTS Semantics Model of Event-B Synchronization Control Flow Design Patterns 

 

574 | J Inf Process Syst, Vol.15, No.3, pp.570~592, June 2019 

 
In non_control_model, there is no r-related expression in the guards of the a_on and a_off events. Thus, 

the occurrence of the above two events is not constrained by the variable r. Likewise, the r_on and r_off 
events are not constrained by the variable a. 

 
3.1 Weak Synchronization Pattern 
 

The weak synchronization pattern means that after the actuator executes trigger event a_on, the reactor 
can either respond to it (execute the r_on event) or make no response (do not execute the r_on event). 
This relationship also applies to events a_off and r_off. A realistic case of this pattern is the response of 
the keyboard to the keystroke event—in many cases, a user may trigger many “button is pressed” events 
in one second because of his finger jitter, but in fact, he just wants to trigger one event. 

The principle of weak synchronization pattern is shown in Fig. 2. Where the two signals labeled by a 
and r represent the states of the actuator a and the reactor r, respectively. The rising edge indicates that 
the value of a or r changes from 0 to 1 while the falling edge changes their values from 1 to 0. 

 

  
(a) (b)

Fig. 2. The principle of weak synchronization pattern: (a) case 1 and (b) case 2. 
 
The Event-B model of the weak synchronization pattern, weak_model is: 
 

 
Compared with the non_control_model, weak_model adds some constraint in the event r_on and r_off, 

which specifies that the r_on event can occur only when a = 1 (event a_on has occurred). Similarly, r_off 
events can only occur after event a_off. We added some dashed arrows to the Event-B model to indicate 
the triggering relationship between events. They indicate that two events will be enabled, a_off and r_on 
after the a_on event occurs. Similarly, after the action1: a:= 0 in the a_off event is performed, there are 
two events be enabled, a_on and r_off. 



Han Peng, Chenglie Du, Lei Rao, and Zhouzhou Liu 
 

 

J Inf Process Syst, Vol.15, No.3, pp.570~592, June 2019 | 575 

3.2 Strong Synchronization Pattern 
 

The strong synchronization pattern is similar to the synchronous call in the function call, that is, the 
reactor r must perform the event r_on after the actuator a executes the event a_on, otherwise the actuator 
will wait forever until the reactor responds. Thus, the actuator can only execute the a_off event after the 
reactor executes the r_on event, and the reactor must, in turn, execute the r_off event after a_off event 
occurs. The principle of strong synchronization pattern is shown in Fig. 3. 

 

 
Fig. 3. The principle of strong synchronization pattern. 

 
The Event-B model of the strong synchronization pattern, strong_model is: 
 

 
 
Strong_model adds more constraints to the actuator events a_on and a_off of the weak_model so that 

the events in the model must only be executed in the order indicated by the dashed arrows. 

 
3.3 Strong-Weak Synchronization Pattern 
 

In a multi-level control system, there is also a “trigger-response” relationship between subsystems. For 
example, if we name the strong synchronization subsystem composed of the actuator a and the reactor r 
as sub-system 1, while name the strong synchronization subsystem composed of the actuator b and the 
reactor s as sub-system 2, then the strong-weak synchronization relation describes the “weak trigger-
response” relationship between these two strong synchronization subsystems. The principle of strong-
weak synchronization is shown in Fig. 4. 

Strong-weak synchronization pattern has two possible cases. In the first case, the r_on event of 
subsystem 1 can trigger the b_on event of subsystem 2, but it is not necessarily a strong synchronization 
relationship, that is, when r_on event is executed, subsystem 2 can either execute b_on event or maintain 
its own state unchanged, as shown in Fig. 4(a). In the second case, the s_off event of subsystem 2 can 
trigger the a_ off event of subsystem 1 and is not a strong synchronization relationship either, that is, after 
the s_off event occurs, the subsystem 1 may either execute a_ off event or maintain its state unchanged, 
as shown in Fig. 4(b). 



LTS Semantics Model of Event-B Synchronization Control Flow Design Patterns 

 

576 | J Inf Process Syst, Vol.15, No.3, pp.570~592, June 2019 

(a) 

(b) 
Fig. 4. The principle of strong-weak synchronization pattern: (a) case 1 and (b) case 2. 

 
The Event-B model of the strong-weak synchronization pattern, strong_weak_model is: 
 

 
 
Although we use the dotted arrows to express as clearly as possible the order of events in the strong-

weak synchronization relationship, it is obvious that it is very difficult to clearly analyze the event order 
in such a two-level control system model. For the more complex multi-levels control system, it is almost 
impossible to intuitively and clearly express the event order of system model. 

 
3.4 Strong-Strong Synchronization Pattern 
 

The strong-strong synchronization pattern means that: firstly, the reactor r of the subsystem 1 is the 
trigger of the actuator b of the subsystem 2. The subsystem 2 must perform the b_on event as long as the 



Han Peng, Chenglie Du, Lei Rao, and Zhouzhou Liu 
 

 

J Inf Process Syst, Vol.15, No.3, pp.570~592, June 2019 | 577 

r_on event occurs. Secondly, once the b_on event occurs, then the subsequent event must be s_on, b_off, 
s_off because the subsystem 2 is a strong synchronization system. Thirdly, the subsystem 1 will maintain 
its state (that is, a = 1, r = 1) after r_on event occurs until the s_off event is executed by the subsystem 2. 
That is to say, the a_off event must be triggered by the s_off event. The principle of strong- strong 
synchronization is shown in Fig. 5. 

 

 
Fig. 5. The principle of strong- strong synchronization pattern. 

 
The Event-B model of the strong-weak synchronization pattern, strong_strong_model is: 
 

 
 
In the strong_strong_model, a state variable m has been added based on strong_weak_model to 

constrain the relationship between a_on and a_off, which means a_off can be executed only after the b_on 
event occurs. Since b and s composed a strong synchronization subsystem, when b_on occurs, it means 
that its subsequent events must be s_on, b_off and s_off, so a_off only can occur after the event sequence 
“b_on, s_on, b_off, s_off”, that is, a_off only can occur after the s_off event. 

We can see that: firstly, the event order of Event-B design patterns is difficult to analyze. Secondly, the 
process from the non_control_model to the weak_model and then to the strong_model is an incremental 
process that enhances the constraint. Similarly, from the strong_weak_model to strong_strong_model is 
also an increasing constraint enhancement process. This inspires us to establish the LTS semantic models 
of the four synchronic control flow patterns in an incremental way. 



LTS Semantics Model of Event-B Synchronization Control Flow Design Patterns 

 

578 | J Inf Process Syst, Vol.15, No.3, pp.570~592, June 2019 

4. The LTS Model of the Event-B Synchronization Patterns 

In this section, we will build the LTS behavior semantic model of the Event-B synchronous control flow 
design pattern. LTS is a state transition system in which the transition is labeled as an action. The action 
set of the LTS is called its communication alphabet. 

 
Definition 1.1 (LTS [24]): Let States represent a universal set of states, Acts represents a universal 

action set, and then an LTS P is defined as a quaternion P=<Q, Σ, , q> where: 
 Q  States, representing the state set of P; 
 Σ=P(P Acts), representing the action set of P; 
  QΣ  Q, representing the transition relationship in P, these transitions are labeled with the 

elements in Σ; 
 q  Q, representing the initial state of P. 

An LTS P can be converted to LTS P' by action a∈A, denoted ܲ ௔→ܲ′, if P′ = < Q, Σ, , q′ > and (q, a, 
q′ )  

We need to use the parallel composition of LTSs to express the interaction between multiple LTSs. The 
following gives the definition of LTS parallel composition. 

 
Definition 1.2 Parallel composition of LTSs: The parallel composition of two LTS M=< Q1, Σ1, Δ1, q1 > 

and N = < Q2, Σ2, Δ2, q2 > are expressed as LTS (M || N) = < Q1 ×Q2, Σ1∪Σ2, Δ, (q1, q2)>, where Δ is the 
minimum relation that satisfies the following constraint: 

 ெ→ೌெᇲ			ெ||ே→ೌெᇲ	||ே 		ܽ(1)                                                                         ܰߙ 

ே→ೌேᇲ			ெ||ே→ೌெ||ேᇲ 		ܽ(2)                                                                        ܯߙ 

ெ→ೌெᇲ,ே→ೌேᇲ				ெ||ே→ೌெᇲ	||ேᇲ 			ܽ ≠ ߬                                                                       (3) 

 

where a∈Σ1∪Σ2, τ  represents an internal action that is not visible to the outside. 
We start from the LTS model of the basic non_control_model, and gradually construct the LTS model 

of the four synchronization patterns. 
Our basic idea is to treat an Event-B model as a composite LTS while treating each state variable of this 

Event-B model as an atomic LTS. Therefore, the LTS of Event-B model is the parallel composition of all 
atomic LTSs. The advantage of this idea is that, although the LTS model of an Event-B model is very 
complex, we can break it into some little atomic LTSs. Each atomic LTS corresponds to the state transition 
of a single variable which is easy to be modeled. 

Our translation method is based on a basic fact in Event-B model, that is, the occurrence of an event 
will change the value of a variable. Thus, for each atomic LTS, we can mark the event that causes its state 
change to a transition edge in this LTS. The source node of this transition is the value of the variable 
before the event occurs, while the destination node is the value of the variable after the event occurs. In 



Han Peng, Chenglie Du, Lei Rao, and Zhouzhou Liu 
 

 

J Inf Process Syst, Vol.15, No.3, pp.570~592, June 2019 | 579 

this way, we get the following two translation rules: 
 
Rule 1. Each variable in the Event-B model is modeled as an atomic LTS, and all possible values for this 
variable form the state space of this atomic LTS. 
 
Rule 2. For each atomic LTS P, if an event e in the Event-B model changes the value of its corresponding 

variable from s1 to s2, then we add an element	(1ݏ →݁  .to the transition set of this atomic LTS (2ݏ
 

4.1 LTS Model of non_control_model 
 

According to Rules 1 and 2, we can easily get the LTS model of an and rn in non_control_model, namely 
the LTS AN and the LTS RN : 

LTS AN=< {0, 1}, {a_on,a_off},{(0 ௔_௢௡ሱۛ ሮ 1), (1 ௔_௢௙௙ሱۛ ሮۛ 0)},0> 

LTS RN =< {0, 1}, {r_on,r_off},{(0 ௥_௢௡ሱۛ ሮ 1), (1 ௥_௢௙௙ሱۛ ሮۛ 0)},0> 

The LTS model of non_control_model is equal to the parallel composition of LTS AN and LTS RN，

namely LTS N. According to the parallel composition rules in Definition 1.2, we get: 
LTS N=LTS(AN || RN)=< QN, ΣN, ΔN, qN>, where： 
QN= {(0, 0), (0, 1), (1, 1), (1, 0)} 
ΣN= {a_on, a_off, r_on, r_off} 

ΔN= {(0,0) ௔_௢௡ሱۛ ሮ (1,0),	(0,1) ௔_௢௡ሱۛ ሮ (1,1) , (1,1) ௔_௢௙௙ሱۛ ሮۛ (0,1) ,	(1,0) ௔_௢௙௙ሱۛ ሮۛ (0,0), (0,0) ௥_௢௡ሱۛ ሮ (0,1),	(1,0) ௥_௢௡ሱۛ ሮ (1,1) , (0,1) ௥_௢௙௙ሱۛ ሮۛ (0,0) ,	(1,1) ௥_௢௙௙ሱۛ ሮۛ (1,0) } 
qN=(0,0). 

The state transition diagram for the atomic LTS of an and rn as well as composed LTS N is shown in 
Fig. 6. The “||” symbol in Fig. 6 is parallel composition operator. 

 

Fig. 6. LTS model of non_control_model and its atomic LTS. 
 
 

4.2 LTS Model of weak_model 
 

If there is no interaction between the atomic LTSs, that is, the change of one state variable in the Event-
B model does not affect the change of another state variable, just like non_control_model, then the Rules 
1 and 2 are sufficient to build the LTSs of Event-B model. But in the actual situation, this is usually not 
the case. Therefore, we also need to consider the impact of interaction in the Event-B model on the atomic 
LTSs. 



LTS Semantics Model of Event-B Synchronization Control Flow Design Patterns 

 

580 | J Inf Process Syst, Vol.15, No.3, pp.570~592, June 2019 

In Section 3.1, we have already shown that the Event-B model of the weak synchronize pattern can be 
obtained by adding some guards to the non_control_model (e.g., add a guard “a = 1” for the r_on event 
of non_control_model). Now we need to map this change to the LTS of the actuator a and the reactor r. 

However, there is currently no rule that can be applied to r_on because the r_on event does not change 
the value of a. Thus, we use a tricky approach to transform the r_on event into an r_on' event in which a 
“useless” action named action2: a ≔ 1 is added: 

 
 
 
 
 
 
 
 
 
 
 

It is obvious that r_on and r_on' has the same behavior semantics. They all do the same behavior, 
“change the value of variable a from 1 to 1”. While this sounds ridiculous, it can help us to construct LTS 
through the code of r_on. Now, according to Rule 2, we can add a new transition (1 ௥_௢௡ሱۛ ሮ 1)  to the 
transition set of atomic LTS of a. It should be noted that although guard1: a = 1 appears in the guards of 
r_on, it describes the impact of event r_on on variable a, so the LTS we need to modify is the LTS of a. 

After generalization of the above situation, we can get Rule 3. 
 
Rule 3. Assume that s is a variable in an Event-B model; qi is a possible value for q. If there is an 

expression “q = qi” in the guards of event e, and the action of event e does not change the value of q, then 
we should add a transition (ݍ௜ ௘→  .௜) to the transition set of LTS of variable qݍ

 
Rule 3 is a special case of Rule 2. In the LTS transition graph, it means that a reflexive edge is added to 

the qi state node in the LTS of q, and the edge is labeled with event e. 
Now, according to Rule 3 and weak_model, we can easily get the LTS model of aw and rw in weak 

synchronization pattern, namely LTS Aw and LTS Rw: 

LTS Aw=< {0, 1}, {a_on,a_off,r_on,r_off},{(0 ௔_௢௡ሱۛ ሮ 1), (1 ௔_௢௙௙ሱۛ ሮۛ 0), (0 ௥_௢௙௙ሱۛ ሮۛ 0), (1 ௥_௢௡ሱۛ ሮ 1)},0> 

LTS Rw =< {0, 1}, {r_on,r_off},{(0 ௥_௢௡ሱۛ ሮ 1), (1 ௥_௢௙௙ሱۛ ሮۛ 0)},0> 

The LTS model of weak _model is equal to the parallel composition of LTS AW and LTS AW, namely 
LTS W: 

LTS W=LTS(Aw||Rw)= < QW, ΣW, ΔW, qW>,where: 
QW = {(0, 0), (0, 1), (1, 1), (1, 0)} 
ΣW= {a_on,a_off,r_on,r_off} 

ΔW= {(0,0) ௔_௢௡ሱۛ ሮ (1,0),	(0,1) ௔_௢௡ሱۛ ሮ (1,1),(1,1) ௔_௢௙௙ሱۛ ሮۛ (0,1),	(1,0) ௔_௢௙௙ሱۛ ሮۛ (0,0),	(1,0) ௥_௢௡ሱۛ ሮ (1,1),(0,1) ௥_௢௙௙ሱۛ ሮۛ (0,0)} 
qW=(0,0). 



Han Peng, Chenglie Du, Lei Rao, and Zhouzhou Liu 
 

 

J Inf Process Syst, Vol.15, No.3, pp.570~592, June 2019 | 581 

The state transition diagram for the atomic LTS of aw and rw as well as composed LTS W is shown in 
Fig. 7. 

 

Fig. 7. LTS model of weak_model and its atomic LTS. 
 
We can see that the LTS of the weak synchronization pattern is in fact a clipping of the LTS N. 

Compared to the transition set ΔN, there are two transitions ((0,0) ௥_௢௡ሱۛ ሮ (0,1) and (1,1) ௥_௢௙௙ሱۛ ሮۛ (1,0)) removed 
from the transition set ΔW, which is the effect of adding guards on events r_on and r_off. 

 
4.3 LTS Model of strong_model 
 

According to Rule 3 and strong_model, we continue to construct LTS models of as and rs in strong 
synchronization patterns, named LTS AS and LTS RS: 

LTS AS =< {0, 1}, {a_on,a_off,r_on,r_off},{(0 ௔_௢௡ሱۛ ሮ 1), (1 ௔_௢௙௙ሱۛ ሮۛ 0), (0 ௥_௢௙௙ሱۛ ሮۛ 0), (1 ௥_௢௡ሱۛ ሮ 1)},0> 

LTS RS =< {0,1},{a_on,a_off,r_on,r_off},{(0 ௥_௢௡ሱۛ ሮ 1), (1 ௥_௢௙௙ሱۛ ሮۛ 0), (0 ௔_௢௡ሱۛ ሮ 0), (1 ௔_௢௙௙ሱۛ ሮۛ 1)},0> 

The LTS model of strong _model is equal to the parallel composition of LTS AS and LTS RS，namely 
LTS S: 

LTS S=LTS(AS || RS)= < QS, ΣS, ΔS, qS>,where： 
QS = {(0,0),(0,1), (1,1) , (1,0) } 
ΣS = {a_on,a_off,r_on,r_off} 

ΔS = {(0,0) ௔_௢௡ሱۛ ሮ (1,0),		(1,0) ௥_௢௡ሱۛ ሮ (1,1) (1,1) ௔_௢௙௙ሱۛ ሮۛ (0,1),(0,1) ௥_௢௙௙ሱۛ ሮۛ (0,0) } 
qS = (0,0). 
 
The state transition diagram for the atomic LTS of as and rs as well as composed LTS S is shown in Fig. 8. 
 

 
Fig. 8. LTS model of strong_model and its atomic LTS. 

 
4.4 LTS Model of strong_weak_model 
 

Strong_weak_model seems to be the most complex, but in fact, we can easily get LTS models of each 
variable according to the Rules 1 to 3. First, according to Rulex 1 and 2, we establish the atomic LTS 

r_off

a_ona_off

a=0
r=0

a=0
r=1

a=1
r=0

a=1
r=1r_on

a_on a_off=
LTS W

a_off
a=0 a=1

r_on

r_off
r=0 r=1

a_on
LTS AW LTS RW

r_off r_on



LTS Semantics Model of Event-B Synchronization Control Flow Design Patterns 

 

582 | J Inf Process Syst, Vol.15, No.3, pp.570~592, June 2019 

models of asw, rsw, bsw and ssw respectively. Then we add the synchronization control transitions on these 
atomic LTSs according to Rule 3 and strong_weak_model. The final atomic LTS models are: 

LTS ASW=< {0,1},{a_on,a_off,r_on,r_off ,b_on},{(0 ௔_௢௡ሱۛ ሮ 1), (1 ௔_௢௙௙ሱۛ ሮۛ 0), (0 ௥_௢௙௙ሱۛ ሮۛ 0), (1 ௥_௢௡ሱۛ ሮ 1), (1 ௕_௢௡ሱۛ ሮ 1)},0> 
LTS RSW =< {0,1},{a_on,a_off,r_on,r_off,b_on},{(0 ௥_௢௡ሱۛ ሮ 1), (1 ௥_௢௙௙ሱۛ ሮۛ 0), (0 ௔_௢௡ሱۛ ሮ 0), (1 ௔_௢௙௙ሱۛ ሮۛ 1), (1 ௕_௢௡ሱۛ ሮ 1)}, 0> 
LTS BSW=< {0, 1}, {b_on,b_off,s_on,s_off,a_off}, 

{(0 ௕_௢௡ሱۛ ሮ 1), (1 ௕_௢௙௙ሱۛ ሮۛ 0), (0 ௔_௢௙௙ሱۛ ሮۛ 0), (0 ௦_௢௙௙ሱۛ ሮۛ 0), (1 ௦_௢௡ሱۛሮ 1)}, 0> 
LTS SSW=<{0, 1}, {b_on,b_off,s_on,s_off,a_off}, 

{(0 ௦_௢௡ሱۛሮ 1), (1 ௦_௢௙௙ሱۛ ሮۛ 0), (0 ௕_௢௡ሱۛ ሮ 0), (0 ௔_௢௙௙ሱۛ ሮۛ 0), (1 ሱ݂݂ۛ݋_ܾ ሮۛ 1)},0> 

The LTS model of strong_weak_model is equal to the parallel composition of these four LTSs, namely 
LTS SW: 

LTS SW=LTS(ASW||RSW||BSW||SSW)= < QSW, ΣSW, ΔSW, qSW>,where： 
QSW = {(0,0,0,0),(0,1,0,0), (1,1,0,0),(1,0,0,0),(1,1,0,1),(1,1,1,1),(1,1,1,0) } 
ΣSW = {a_on,a_off,r_on,r_off,b_on,b_off,s_on,s_off } 

ΔSW = {(0,0,0,0) ௔_௢௡ሱۛ ሮ (1,0,0,0), (1,0,0,0) ௥_௢௡ሱۛ ሮ (1,1,0,0), (1,1,0,0) ௔_௢௙௙ሱۛ ሮۛ (0,1,0,0), (0,1,0,0) ௥_௢௙௙ሱۛ ሮۛ (0,0,0,0), (1,1,0,0) ௕_௢௡ሱۛ ሮ (1,1,1,0), (1,1,1,0) ௦_௢௡ሱۛሮ (1,1,1,1), (1,1,1,1) ௕_௢௙௙ሱۛ ሮۛ (1,1,0,1), (1,1,0,1) ௦_௢௙௙ሱۛ ሮۛ (1,1,0,0)} 
qSW = (0,0,0,0). 
 
The state transition diagram for the atomic LTS of asw, rsw, bsw, ssw as well as composed LTS SW is shown 

in Fig. 9. 
 

Fig. 9. LTS model of strong_weak_model and its atomic LTS. 
 

4.5 LTS Model of strong_ strong_model 
 

In Section 3.4, we already know that strong_strong_model is actually just adding some constraints on 
the basis of strong_weak_model (by adding a variable m to constrain the execution order of a_on, b_on 
and a_off). So we only need to add a new LTS M base on LTS SW to constrain it: 

LTS ASS =LTS ASW 
LTS RSS =LTS RSW 
LTS BSS =LTS BSW 
LTS SSS =LTS SSW 



Han Peng, Chenglie Du, Lei Rao, and Zhouzhou Liu 
 

 

J Inf Process Syst, Vol.15, No.3, pp.570~592, June 2019 | 583 

LTS M= < {0, 1}, {a_on,b_on,a_off},{(0 ௔_௢௡ሱۛ ሮ 1), (1 ௕_௢௡ሱۛ ሮ 0), (0 ௔_௢௙௙ሱۛ ሮۛ 0)},0>. 
 
The state transition diagram for LTS M is shown in Fig. 10. 
 

Fig. 10. LTS model of m. 
 
The LTS model of strong_strong _model is equal to the parallel composition of LTS ASS, LTS RSS, LTS 

BSS, LTS SSS, and LTS M, namely LTS SS: 
LTS SS=LTS(ASS || RSS || BSS || SSS ||M)= < QSS, ΣSS, ΔSS, qSS>,where： 
QSS = {(0,0,0,0,0),(0,1,0,0,0), (1,1,0,0,0),(1,1,0,1,0),(1,1,1,1,0),(1,1,1,0,0), (1,1,0,0,1) ,(1,0,0,0,1) } 
ΣSS = {a_on,a_off,r_on,r_off,b_on,b_off,s_on,s_off } 

ΔSS = {(0,0,0,0,0) ௔_௢௡ሱۛ ሮ (1,0,0,0,1)，(1,0,0,0,1) ௥_௢௡ሱۛ ሮ (1,1,0,0,1)，(1,1,0,0,1) ௕_௢௡ሱۛ ሮ (1,1,1,0,0), (1,1,1,0,0) ௦_௢௡ሱۛሮ (1,1,1,1,0), (1,1,1,1,0) ௕_௢௙௙ሱۛ ሮۛ (1,1,0,1,0), (1,1,0,1,0) ௦_௢௙௙ሱۛ ሮۛ (1,1,0,0,0), (1,1,0,0,0) ௔_௢௙௙ሱۛ ሮۛ (0,1,0,0,0),	(0,1,0,0,0) ௥_௢௙௙ሱۛ ሮۛ (0,0,0,0,0)	} 
qSS = (0,0,0,0,0). 

The state transition diagram for LTS SS is shown in Fig. 11. 
 

 
Fig. 11. LTS model of strong_strong_model. 

 
 

5. Case Study 

In this section, we apply the LTS semantic model of the four synchronous control flow design patterns 
of Event-B to the behavior model construction of a complex multi-level control system. We map the 
instantiation process of the Event-B model to the instantiation process of its corresponding LTS semantic 
model, and obtain the LTS semantic model of the Event-B model of the complex control system. On this 
basis, we use LTL to describe the behavior properties of the Event-B model and verify them. In this way, 
we can verify the behavioral properties of each refinement level of the Event-B model until the final 



LTS Semantics Model of Event-B Synchronization Control Flow Design Patterns 

 

584 | J Inf Process Syst, Vol.15, No.3, pp.570~592, June 2019 

refinement model is verified. Since the Rodin platform (an Event-B modeling environment) provides a 
mechanism for refinement checking, we do not need to be concerned with the correctness of refinement, 
but only to verify the behavioral properties of each LTS model. 

 

Fig. 12. The process of modeling and verification. 
 
The modeling and verification processes are shown in Fig. 12. The leftmost part of the Fig. 12 is a 

common process to get the Event-B model of a complex control system by the instantiations of Event-B 
design patterns. The middle of Fig. 12 is the process of enhancing the constraints of the LTS according to 
the refinement process of the Event-B model. The rightmost part of Fig. 12 is the property verification 
process of the LTS model corresponding to the Event-B model. We guarantee that at each refinement 
level, there are Mi ⇔ Li, and then verify the LTL properties of the LTS model, i.e. Li ⊨Pi. In this way, we 
can guarantee Mi ⊨ Pi. The formula at the bottom of Fig. 12 is a formal representation of this conversion 
and verification process. 

 
5.1 System Description 
 

We use the complex control system design patterns in the study of Abrial [1] to illustrate our approach. 
The system is called the mechanical press control system. The system has four control buttons, which 
include two motor control buttons and two clutch control buttons to start and stop the system 
components. After the motor is started, if the clutch is engaged, the rod will drive the slide up and down 
to use the tool to process the part. A door is used to prevent the worker from putting his hand under the 
tool while processing the part. The physical composition of the system is shown in Fig. 13(a). 

The complete internal composition of the system and the synchronization control relationship between 
the components are shown in Fig. 13(b).We use the dotted line shadow box to represent the subsystem. 
For example, there is a “trigger-response” relationship between the “start motor button” and the 
“controller”, so we put them into a subsystem, that is, Sub1. At the same time, we use the dotted arrows 
to express the “trigger-response” relationship between the components or subsystems. The starting point 
of the arrow indicates the actuator component or the actuator subsystem, and the end point of the arrow 
represents the reactor part or the reactor subsystem. For example, the arrow with the “start motor button” 

⟺



Han Peng, Chenglie Du, Lei Rao, and Zhouzhou Liu 
 

 

J Inf Process Syst, Vol.15, No.3, pp.570~592, June 2019 | 585 

as the starting point and the “controller” as the end point indicate that in the subsystem 1, the “start motor 
button” is the actuator and the “controller” is the reactor. We marked the type of synchronization 
relationship on the arrow. For example, the relationship between Sub5 and Sub7 is a strong - weak 
synchronization relationship. 

 

 
(a) (b)

Fig. 13. The mechanical press control system: (a) the physical structure of the press system and (b) the 
synchronization relationship in the press system. 

 
Abrial [1] used the instantiation methods to progressively introduce the various subsystems and 

various synchronic control flow relationships into the model during the refinement process and ended 
this process at the seventh refinement layer. The shaded portion of Fig. 12 represents this refinement 
process. We need to complete the process shown in the middle part and the rightmost part of Fig. 12. 

 
5.2 Instantiation Process of LTS Model 
 

The instantiation process from the Event-B design pattern to the Event-B system model is a very simple 
renaming process, as we will see in Table 1. The principle behind this process is that modifying the variable 
name, constant name, and event name will not affect the correctness and refinement consistency of the 
system. We apply this idea to the LTS behavior semantic model of Event-B design pattern, and get the LTS 
model of Event-B system model by instantiating the LTS behavior semantic model of Event-B design 
pattern. The instantiation process of the LTS model is also very simple, that is, renaming the name of the 
state, conversion and atomic LTS of LTS behavior semantics model. It is obvious that the instantiation of 
the LTS behavior semantic model does not change the behavior of the LTS model itself, either. 

We use an example of strong synchronization pattern to illustrate the correspondence between the 
process of instantiation of Event-B design pattern and the process of instantiation of the LTS behavior 
semantic model of Event-B design pattern. 

The relationship between the controller and the motor in Sub5 in Fig. 13 are a strong synchronization 
relationship. Abrial [1] instantiates the Event-B design pattern strong_model in Section 3.2 into the Event-
B model of Sub5, namely controller_motor_model. Corresponding to this process, we instantiate the 
atomic LTSs model of the strong synchronization pattern, that is LTS AS and LTS RS in Section 4.3, into 



LTS Semantics Model of Event-B Synchronization Control Flow Design Patterns 

 

586 | J Inf Process Syst, Vol.15, No.3, pp.570~592, June 2019 

their LTS model, namely Motor_actuator0 and Motor_sensor0, respectively, then perform the parallel 
composition operation on them to get the LTS behavior semantic model of controller_motor_model, 
named LTS Press0. The correspondence between these two processes is shown in Table 1. The 
instantiation process of Event-B design pattern is just to rename the elements of column 2 of Table 1 to 
the elements of column 3 of Table 1. Similarly, the instantiation process of LTS is just to rename the 
elements of column 5 of Table 1 to the elements of column 6 of Table 1. 

 
Table 1. The corresponding relationship between Event-B design pattern instantiation and LTS model 
instantiation 

 Instantiation of Event-B design pattern  Instantiation of LTS model 
strong_model controller_motor_model  LTS S  LTS Press0  

Variables 
a motor_actuator 

LTS 
a motor_actuator0 

r motor_sensor r motor_sensor0 

Constants 
0 stopped 

States 
0 0 

1 working 1 1 

Events 

a_on treat_start_motor 

Transitions

a_on treat_start_motor 
a_off treat_stop_motor a_off treat_stop_motor 
r_on motor_start r_on motor_start 
r_off motor_stop r_off motor_stop 

 
The controller_motor_model of Sub5 obtained by instantiation of strong_model is: 
 

 
 

The LTS behavior model of controller_motor_model is the parallel composition of the two LTSs in Fig. 
14, that is, LTS Press0 shown in Fig. 15. 

 

 
Fig. 14. Atomic LTSs of LTS Press0. 



Han Peng, Chenglie Du, Lei Rao, and Zhouzhou Liu 
 

 

J Inf Process Syst, Vol.15, No.3, pp.570~592, June 2019 | 587 

Fig. 15. LTS Press0. 
 
We use this method to convert each layer of the Event-B model of mechanical press control system into 

the corresponding LTS semantic model. In the last layer, that is, the seventh layer, we get 15 atomic LTSs, 
of which 14 are shown in Table 2. The LTS that not be shown in Table 2 is the LTS M in Section 4.5, 
which is used to model the strong-strong synchronization pattern. 

The final system LTS model, named LTS Press7, is the parallel composition of the above 15 LTSs, that is: 
LTS Press7=LTS Sub1||LTS Sub2||LTS Sub3||LTS Sub4||LTS Sub5||LTS Sub6||LTS Sub7||LTS M, where: 
LTS Sub1 =start_motor_button||start_ motor_impulse; 
LTS Sub2 =stop_motor_button||stop_ motor_impulse; 
LTS Sub3 =start_clutch_button||start_clutch_impulse 
LTS Sub4 =stop_clutch_button||stop_clutch_impulse 
LTS Sub5 =motor_actuator||motor_sensor 
LTS Sub6 =door_actuator||door_sensor 
LTS Sub7 =clutch_actuator||clutch_sensor 
 

Table 2. The atomic LTS models of mechanical press control system 

Subsystem LTS 
LTS model Synchronization 

relationship Actuator LTS Reactor LTS 
Sub1 (B1-Controller) start_motor_button start_ motor_impulse Weak synchronization 
Sub2 (B2-Controller) stop_motor_button stop_ motor_impulse Weak synchronization 
Sub3 (B3-Controller) start_clutch_button start_clutch_impulse Weak synchronization 
Sub4 (B4-Controller) stop_clutch_button stop_clutch_impulse Weak synchronization 
Sub5 (Controller-Motor) motor_actuator motor_sensor Strong synchronization 
Sub6 (Controller-Door) door_actuator door_sensor Strong synchronization 
Sub7 (Controller-Clutch) clutch_actuator clutch_sensor Strong synchronization 

 
5.3 Verification of the Behavior Properties 
 

Now we can complete the rightmost process in Fig. 12, that is, the behavior properties verification of 
the LTS model. Due to space limitations, we only give behavior properties verification process of the final 
model Press7. Abrial [1] specifies the basic requirements for the mechanical press control system, as 
shown in Table 3. 

 

Table 3. The basic requirements for the mechanical press control system 
Requirement No. Requirement description 

FUN_1 When the clutch is disengaged, the door cannot be closed several times, ONLY ONCE 
FUN_2 When the door is closed, the clutch cannot be disengaged several times, ONLY ONCE 
SAF_1 When the clutch is engaged, the motor must work 
SAF_2 When the clutch is engaged, the door must be closed 



LTS Semantics Model of Event-B Synchronization Control Flow Design Patterns 

 

588 | J Inf Process Syst, Vol.15, No.3, pp.570~592, June 2019 

Table 4. The LTL expressions of basic requirements 
Requirement No. LTL expressions 

FUN_1 □(DOOR_CLOSED → □(DOOR_CLOSED U¬CLUTCH_ENGAGED)  
FUN_2 □(¬CLUTCH_ENGAGED → □(¬CLUTCH_ENGAGED U DOOR_CLOSED)  
SAF_1 □(CLUTCH_ENGAGED → MOTOR_WORKING) 
SAF_2 □(CLUTCH_ENGAGED → DOOR_CLOSED) 

 
We write LTL expressions according to the requirements in Table 3, as shown in Table 4. The symbol 

“□”and “U” in Table.4 represent “always” and “Until” in linear temporal logic, respectively, while the 
symbols  “¬” and  “→” represent “negation” and “implication” in proposition logic, respectively. 

We verified the LTL behavior properties of LTS model of each refinement layer of the Event-B model 
and find that the system model at some intermediate layers does not satisfy the required behavior 
properties. But in the last layer, that is, the seventh layer, all of the behavioral properties are satisfied. This 
is because Event-B’s refinement strategy does not take into account the preservation of behavioral 
properties. It also suggests that our method is necessary. 

 
 

6. Experimental Results and Discussion 

In this section, we compare the results of our work with previous research in three aspects: explicit 
expression of control flow, model simulation and analysis capabilities, and support for LTL properties 
verification. 

 
6.1 Comparison of Explicit Expression Ability of Control Flow 
 

We show the LTS model of strong-weak synchronization pattern in Fig. 16. As can be seen from Fig. 
16, while the event order of the Event-B design pattern given in Section 4 seems to be complicated, it is 
easier to observe the event order in its LTS model. Compared with the way of expression of LTS model, 
the CSP||B method uses the textual form of “Process P-> action. Process Q” to express the sequence of 
events. The advantage of this is that the code is concise, but also causes the order of its actions to be 
invisible; “atomic decomposition” method and Flow methods also use a graphical way to describe the 
relationships between events. However, the main advantage of the “atomic decomposition” method is to 
express the relationship between abstract and concrete events, not the event order. We must analyze its 
tree structure carefully to understand the actual control flow of Event-B model; The Flow method uses a 

 

 
Fig. 16. The LTS model of strong - weak synchronization pattern. 



Han Peng, Chenglie Du, Lei Rao, and Zhouzhou Liu 
 

 

J Inf Process Syst, Vol.15, No.3, pp.570~592, June 2019 | 589 

style like “event a enable/disable event b” to express the relationship between events, which does not 
conform to the traditional way of expression of control flow (i.e., the state transition system style). 

 
6.2 Comparison of Model Simulation and Analysis Capabilities 
 

We counted the relevant data of the Event-B model of the mechanical press control system, as shown 
in Table 5 and Fig. 17. At the same time, we presented the statistics of the LTS model of the mechanical 
press control system, as shown in Table 6 and Fig. 18. Since the LTS model is just the behavior model of 
the Event-B model, the growth of state and transitions in the LTS model reflect the actual effect of the 
addition of guards and actions to the Event-B model. By comparing the graphs, we can see that although 
the Event-B model has a small amount of code (only 348 lines of Event-B code in the 7th refinement 
layer), the 74 guards and 49 actions in these codes will produce 2816 states and 16384 transitions into the 
corresponding LTS model. If we use Rodin to simulate and analyze the transition of the system state, that 
would be a nightmare. The CSP||B method, the “atomic decomposition” method and the Flow method, 
can only generate Event-B code and use the similar method (in Rodin environment) to complete the 
simulation. These methods do not by themselves support the simulation of control flow. Compared to 
these approaches, we model the system as a series of separated components using the concept of “atomic 
LTS” which enable people to observe the individual behavior of each component and the interaction 
between components during system execution, just like in Uppaal [25]. 

 
Table 5. Statistical data of mechanical press control system Event-B model 

Refinement level 
Elements of Event-B press model 

Variables Guards Actions 
Press0 2 8 6 
Press1 6 24 20 
Press2 8 32 26 
Press3 8 36 26 
Press4 10 44 32 
Press5 10 52 32 
Press6 11 54 35 
Press7 15 74 49 

 

Fig. 17. Statistical data of mechanical press control system Event-B model. 



LTS Semantics Model of Event-B Synchronization Control Flow Design Patterns 

 

590 | J Inf Process Syst, Vol.15, No.3, pp.570~592, June 2019 

Table 6. Statistical data of mechanical press control system LTS model 

Refinement level 
Elements of LTS press model

Sub LTSs States Transitions 
Press0 2 4 4 
Press1 6 64 200 
Press2 8 256 1056 
Press3 8 112 384 
Press4 10 448 1984 
Press5 10 160 568 
Press6 11 176 608 
Press7 15 2816 16384 

 

 
Fig. 18. Statistical data of mechanical press control system LTS model. 

 
6.3 Comparison of Support for LTL Property Verification 
 

The results of the “atomic decomposition” method and the Flow method cannot be directly converted 
to LTS models; therefore it is difficult for them to support the verification of LTL properties. The CSP||B 
method is not perfect because the changes of many state variables have not been modeled with CSP. 
Compared to the CSP||B method, we model the behavior of the entire Event-B model as an LTS model. 
Therefore, our behavior modeling method is more comprehensive than the CSP||B method, which makes 
the result of our method for LTL properties verification more credible than that of CSP||B. 

The drawback of LTS model is that it does not support the refinement checking. But we can use Event-
B to prevent this flaw. The complementary capabilities of Event-B and LTS allow us to analyze and verify 
the system’s refinement consistency and behavioral properties from multiple views. This is the idea of the 
integrated formal method that we are currently advocating. 

 
 

7. Conclusion 

As a reusable formal model, the Event-B design pattern has a very important role for the rapid formal 
modeling of the system. But it is difficult to model, analyze, verify and preserve the LTL behavior 
properties of the Event-B model because it lacks behavioral semantics.  In this paper, we establish the LTS 
model of Event-B synchronous control flow design pattern and map the design pattern instantiation 



Han Peng, Chenglie Du, Lei Rao, and Zhouzhou Liu 
 

 

J Inf Process Syst, Vol.15, No.3, pp.570~592, June 2019 | 591 

process of Event-B to the instantiation process of LTS model. We get the LTS model of a complex multi-
level control system using this method and verify its LTL behavior attributes. The experimental data show 
that it is more convenient to model, analyze and verify the LTL behavior properties of Event-B model if 
we use LTS as behavior semantic model of Event-B. The LTS behavior semantic model can be a useful 
complement to the Event-B model. 

In the future, we will study how to establish the refinement checking mechanism of the LTS model to 
ensure the behavior refinement of the Event-B model, which is lacking in the current refinement checking 
mechanism of Event-B. 

 
 

References 

[1] J. R. Abrial, Modeling in Event-B: System and Software Engineering. Cambridge, UK: Cambridge University 
Press, 2010. 

[2] T. S. Hoang, A, Furst, and J. R. Abrial, “Event-B patterns and their tool support,” Software & Systems 
Modeling, vol. 12, no. 2, pp. 229-244, 2013. 

[3] I. Tounsi, M. H. Kacem, A. H. Kacem, K. Drira, and E. Mezghani, “Towards an approach for modeling and 
formalizing soa design patterns with Event-B,” in Proceedings of the 28th Annual ACM Symposium on Applied 
Computing, Coimbra, Portugal, 2013, pp. 1937-1938. 

[4] A. Gondal, M. Poppleton, and M. Butler, “Composing Event-B specifications: case-study experience,” 
in Software Composition. Heidelberg: Springer, 2011, pp. 100-115. 

[5] A. Gondal, “Feature-oriented reuse with Event-B and Rodin,” Ph.D. dissertation, University of Southampton, 
UK, 2013. 

[6] A. Intana, “Formal engineering methodologies for wireless sensor network development with simulation,” 
Ph.D. dissertation, University of Southampton, UK, 2015. 

[7] R. Silva, “Application of decomposition and generic instantiation,” 2011; https://eprints.soton.ac.uk/272195/. 
[8] R. Silva and M. Butler, “Supporting reuse of Event-B developments through generic instantiation,” in Formal 

Methods and Software Engineering. Heidelberg: Springer, 2009, pp. 466-484. 
[9] S. Yeganefard, M. Butler, and A. Rezazadeh, “Evaluation of a guideline by formal modelling of cruise control 

system in Event-B,” in Proceedings of the Second NASA Formal Methods Symposium (NFM 2010), Washington, 
DC, 2010, pp. 182-191. 

[10] S. Yeganefard and M. Butler, “Problem decomposition and sub-model reconciliation of control systems in 
Event-B,” in Proceedings of 2013 IEEE 14th International Conference on Information Reuse & Integration (IRI), 
San Francisco, CA, 2013, pp. 528-535. 

[11] S. Yeganefard and M. Butler, “Structuring functional requirements of control systems to facilitate refinement-
based formalisation,” Electronic Communications of the EASST, vol. 46, pp. 1-15, 2011. 

[12] S. Yeganefard and M. Butler, “Control systems: phenomena and structuring functional requirement 
documents,” in Proceedings of 2012 IEEE 17th International Conference on Engineering of Complex Computer 
Systems, Paris, France, 2012, pp. 39-48. 

[13] A. S. Fathabadi, M. Butler, and A. Rezazadeh, “A systematic approach to atomicity decomposition in Event-
B,” in Software Engineering and Formal Methods. Heidelberg: Springer, 2012, pp. 78-93. 

[14] E. Alkhammash, M. Butler, A. S. Fathabadi, and C. Cirstea, “Building traceable Event-B models from 
requirements,” Science of Computer Programming, vol. 111, pp. 318-338, 2015. 

[15] A. S. Fathabadi and M. Butler, “Applying Event-B atomicity decomposition to a multi media protocol,” 
in Formal Methods for Components and Objects. Heidelberg: Springer, 2009, pp. 89-104. 

[16] A. S. Fathabadi, A. Rezazadeh, and M. Butler, “Applying atomicity and model decomposition to a space craft 
system in Event-B,” in NASA Formal Methods. Heidelberg: Springer, 2011, pp. 328-342. 



LTS Semantics Model of Event-B Synchronization Control Flow Design Patterns 

 

592 | J Inf Process Syst, Vol.15, No.3, pp.570~592, June 2019 

[17] A. Iliasov, “Use case scenarios as verification conditions: Event-B/Flow approach,” in Software Engineering for 
Resilient Systems. Heidelberg: Springer, 2011, pp. 9-23. 

[18] S. Schneider, H. Treharne, and H. Wehrheim, “A CSP approach to control in Event-B,” in Integrated Formal 
Methods. Heidelberg: Springer, 2010, pp. 260-274. 

[19] S. Schneider, H. Treharne, and H. Wehrheim, “Bounded retransmission in Event-B∥CSP: a case study,” 
Electronic Notes in Theoretical Computer Science, vol. 280, pp. 69-80, 2011. 

[20] S. Schneider, H. Treharne, and H. Wehrheim, “Stepwise refinement in Event-B CSP. Part 1: Safety,” 
Department of Computing, University of Surrey, UK, 2011. 

[21] S. Schneider, H. Treharne, and H. Wehrheim, “The behavioural semantics of Event-B refinement,” Formal 
Aspects of Computing, vol. 26, no. 2, pp. 251-280, 2014. 

[22] S. Schneider, H. Treharne, H. Wehrheim, and D. M. Williams, “Managing LTL properties in Event-B 
refinement,” in Integrated Formal Methods. Cham: Springer, 2014, pp. 221-237. 

[23] T. S. Hoang, S. Schneider, H. Treharne, and D. M. Williams, “Foundations for using linear temporal logic in 
Event-B refinement,” Formal Aspects of Computing, vol. 28, no. 6, pp. 909-935, 2016. 

[24] R. Gorrieri, “Labeled transition systems,” in Process Algebras for Petri Nets. Cham: Springer, 2017, pp. 15-34. 
[25] K. G. Larsen, P. Pettersson, and W. Yi, “UPPAAL in a nutshell,” International Journal on Software Tools for 

Technology Transfer (STTT), vol. 1, no. 1, pp. 134-152, 1997. 
 

 
Han Peng  https://orcid.org/0000-0001-8400-4663 
 
He received both the Bachelor’s degree in Computer Engineering and the Master’s 
degree in Computer Engineering from the Xidian University in 2004 and 2007, 
respectively. He is now PhD candidate student in the Northwestern Polytechnical 
University. He is now an associate professor at Xi'an Aeronautical University. His 
present research interests include software engineering, embedded system, formal 
modeling, and model checking. 
 
 
Chenglie Du  https://orcid.org/0000-0002-1042-9228 
 
He received both the Bachelor’s degree in Computer Science and the Master’s degree 
in Computer Science from the Northwestern Polytechnical University in 1991 and 
1994, respectively. In January 1999, he also received the Ph.D. degree in Automation 
Engineering from the same institution. Presently, he is a Professor of Computer 
Engineering at the Department of Computer Science, Northwestern Polytechnical 
University. His present research interests include software engineering, distributed 
computing, embedded computing, and cyber-physical System. 
 
 
Lei Rao  https://orcid.org/0000-0001-6832-6347 
 
He received his Bachelor’s degree in 2017 and he is studying at the School of Software 
and Microelectronics of Northwestern Polytechnical University for a Master’s degree. 
His current research interests include formal modeling, model checking and so on. 
 
 
 
Zhouzhou Liu  https://orcid.org/0000-0001-7532-9749 
 
He received both the Bachelor’s degree in Information Engineering and the Master’s 
degree in Telecommunication Engineering from the Northwestern Polytechnical 
University in 2004 and 2007, respectively. In April 2016, he also received the Ph.D. 
degree in Information Engineering from the same institution. He is now a professor at 
Xi'an Aeronautical University. His present research interests include intelligent 
computing, mathematical modeling, communication and signal processing applications 
in wireless sensor networks.  


