• Title/Summary/Keyword: Flow attack angle

Search Result 391, Processing Time 0.028 seconds

A Numerical Study of the Effect of Non-equilibrium Condensation on the Oscillation of Shock Wave in a Transonic Airfoil Flow (비평형 응축이 충격파 진동에 미치는 영향에 관한 수치 해석적 연구)

  • Jeon, Heung Kyun;Kim, In Won;Kwon, Young Doo;Kwon, Soon Bum
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.38 no.3
    • /
    • pp.219-225
    • /
    • 2014
  • In this study, to find the characteristics of the oscillation of a terminating shock wave in a transonic airfoil flow with non-equilibrium condensation, a NACA00-12,14,15 airfoil flow with non-equilibrium condensation is investigated through numerical analysis of TVD scheme. Transonic free stream Mach number of 0.81-0.90 with the variation of stagnation relative humidity and airfoil thickness is tested. For the free stream Mach number 0.87 and attack angle of ${\alpha}=0^{\circ}$, the increase in stagnation relative humidity attenuates the strength of the terminating shock wave and inactivates the oscillation of the terminating shock wave. For the case of $M_{\infty}=0.87$ and ${\phi}_0=60%$, the decreasing rate in the frequency of the shock oscillation caused by non-equilibrium condensation to that of ${\phi}_0=30%$ amounts to 5%. Also, as the stagnation relative humidity gets larger, the maximum coefficient of drag and the difference between the maximum and minimum in $C_D$ become smaller. On the other hand, as the thickness of the airfoil gets larger, the supersonic bubble size becomes bigger and the oscillation of the shock wave becomes higher.

Flow Resistance and Modeling Rule of Fishing Nets -2. Flow Resistance of Bag Nets- (그물어구의 유수저항과 모형수칙 -2. 자루형 그물의 유수저항-)

  • KIM Dae-An
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.28 no.2
    • /
    • pp.194-201
    • /
    • 1995
  • In order to make clear the resistance of bag nets, the resistance R of bag nets with wall area S designed in pyramid shape was measured in a circulating water tank with control of flow velocity v and the coefficient k in $R=kSv^2$ was investigated. The coefficient k showed no change In the nets designed in regular pyramid shape when their mouths were attached alternately to the circular and square frames, because their shape in water became a circular cone in the circular frame and equal to the cone with the exception of the vicinity of frame in the square one. On the other hand, a net designed in right pyramid shape and then attached to a rectangular frame showed an elliptic cone with the exception of the vicinity of frame in water, but produced no significant difference in value of k in comparison with that making a circular cone in water. In the nets making a circular cone in water, k was higher in nets with larger d/l, ratio of diameter d to length I of bars, and decreased as the ratio S/S_m$ of S to the area $S_m$ of net mouth was increased or as the attack angle 9 of net to the water flow was decreased. But the value of ks15m was almost constant in the region of S/S_m=1-4$ or $\theta=15-90^{\circ}$ and in creased linearly in S/S_m>4 or in $\theta<15^{\circ}$ However, these variation of k could be summarized by the equation obtained in the previous paper. That is, the coefficient $k(kg\;\cdot\;sec^2/m^4)$ of bag nets was expressed as $$k=160R_e\;^{-01}(\frac{S_n}{S_m})^{1.2}\;(\frac{S_m}{S})^{1.6}$$ for the condition of $R_e<100$ and $$k=100(\frac{S_n}{S_m})^{1.2}\;(\frac{S_m}{S})^{1.6}$$ for $R_e\geq100$, where $S_n$ is their total area projected to the plane perpendicular to the water flow and $R_e$ the Reynolds' number on which the representative size was taken by the value of $\lambda$ defined as $$\lambda={\frac{\pi d^2}{21\;sin\;2\varphi}$$ where If is the angle between two adjacent bars, d the diameter of bars, and 21 the mesh size. Conclusively, it is clarified that the coefficient k obtained in the previous paper agrees with the experimental results for bag nets.

  • PDF

Unguided Rocket Trajectory Analysis under Rotor Wake and External Wind (로터 후류와 외풍에 따른 무유도 로켓 궤적 변화 해석)

  • Kim, Hyeongseok;Chae, Sanghyun;Yee, Kwanjung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.46 no.1
    • /
    • pp.41-51
    • /
    • 2018
  • Downwash from helicopter rotor blades and external winds from various maneuvering make an unguided rocket change its trajectory and range. For the prediction of the trajectory and range, it is essential to consider the downwash effect. In this study, an algorithm was developed to calculate 6-Degree-Of-Freedom(6 DOF) forces and moments exerting on the rocket, and total flight trajectory of a 2.75-inch unguided rocket in a helicopter downwash flow field. Using Actuator Disk Model(ADM) analysis result, the algorithm could analyze the entire trajectory in various initial launch condition such as launch angle, launch velocity, and external wind. The algorithm that considered the interference between a fuselage and external winds could predict the trajectory change more precisely than inflow model analysis. Using the developed algorithm, the attitude and trajectory change mechanism by the downwash effect were investigated analyzing the effective angle of attack change and characteristics of pitching stability of the unguided rocket. Also, the trajectory and range changes were analyzed by considering the downwash effect with external winds. As a result, it was concluded that the key factors of the rocket range change were downwash area and magnitude which effect on the rocket, and the secondary factors were the dynamic pressure of the rocket and the interference between a fuselage and external winds. In tailwind case which was much influential on the range characteristics than other wind cases, the range of the rocket rose as increasing the tailwind velocity. However, there was a limit that the range of the rocket did not increase more than the specific tailwind velocity.

An Experimental Study on the dynamic behavior of 4-Span Cable-Stayed Bridge with ${\pi}$-Type Girder (${\pi}$형 거더를 가진 4경간 사장교의 동적거동에 관한 실험적 연구)

  • Cho, Jae-Young;Kim, Young-Min;Lee, Hak-Eun;Yoon, Ki-Yong
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.4 no.1 s.12
    • /
    • pp.15-24
    • /
    • 2004
  • Generally, a ${\pi}$-type girder composed of two I-type girders is known to have a significant disadvantage in wind resistance design because of aerodynamic instability. A representative bridge for this girder was Tacoma Narrows Bridge. Since Tacoma Narrows Bridge had very low stiffness of the bridge structure and its cross-section shape had aerodynamic instability, the bridge collapsed after severe torsion and vibration events in 19m/s wind speed. Aerodynamic vibration can be avoided by enhancing structural stiffness and damping factor and conducting a study of cross-section shapes. This study shows the angle of attack for the four-span cable stayed bridge having ${\pi}$-type cross-section and describes the aerodynamic characteristics of the changed cross-section with aerodynamic vibration damping additions, by carrying out two-dimension vibration tests. As a result of uniform flow and turbulent flow, the study shows that because the basic ${\pi}$-type cross-section alone can have efficient wind resistant stability, there is no need to have additional aerodynamic damping equipment. Since this four 230m-main-span bridge has a large frequency and also has a big stiffness compared to other bridges containing a similar cross-section, it has aerodynamic stability under the design wind speed.

Computational Fluid Analysis for the Otter Boards - 3 . Efficiency Analysis of the Single Cambered Otter Boards for the Various Slot Position - (전개판에 대한 수직해법 - 3 . 슬롯에 따른 단순만곡형전개판의 성능분석 -)

  • 고관서
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.27 no.4
    • /
    • pp.278-285
    • /
    • 1991
  • The authors propose to use the slot system in order to improve of the efficiency for the cambered otter boards. The experiment is divided into 2 parts, one is the efficiency model test, and the other is the visualization model test. The hydrodynamic characteristics of the model otter boards were tested by efficiency model test to measure the shearing, drag force of the models and visualization test using hydrogen bubble method to observe the streak-line and time-line of flow around the models, and milk spout method to observe the separation zone in the wake behind the models. This study tested for 5 models such ad without slot, slot position 0.2C, 0.4C, 0.6C and 0.8C. The results obtained are as follows: \circled1 The maximum C sub(L) of model otter board with slot position 0.6C in attack angle 27$^{\circ}$ was the highest of all models, it's value was 1.59. \circled2 In general, the L/D ratio of the one slot otter boards were 16~28% higher than otter board without slot. \circled3 The slot position 0.6C was better than any other slot position, and it's conformed by visiualization. \circled4 As to the model otter board with slot position 0.6C, flow speed of the back side was faster 1.3 to 1.7 times than in the front side. \circled5 The size of the separated zone in case of the model otter board with 0.6C was smaller than that of any other models.

  • PDF

Shape and Spacing Effects on Curvy Twin Sail for Autonomous Sailing Drone (무인 해상 드론용 트윈 세일의 형태와 간격에 관한 연구)

  • Pham, Minh-Ngoc;Kim, Bu-Gi;Yang, Changjo
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.26 no.7
    • /
    • pp.931-941
    • /
    • 2020
  • There is a growing interest this paper for ocean sensing where autonomous vehicles can play an essential role in assisting engineers, researchers, and scientists with environmental monitoring and collecting oceanographic data. This study was conducted to develop a rigid sail for the autonomous sailing drone. Our study aims to numerically analyze the aerodynamic characteristics of curvy twin sail and compare it with wing sail. Because racing regulations limit the sail shape, only the two-dimensional geometry (2D) was open for an optimization. Therefore, the first objective was to identify the aerodynamic performance of such curvy twin sails. The secondary objective was to estimate the effect of the sail's spacing and shapes. A viscous Navier-Stokes flow solver was used for the numerical aerodynamic analysis. The 2D aerodynamic investigation is a preliminary evaluation. The results indicated that the curvy twin sail designs have improved lift, drag, and driving force coefficient compared to the wing sails. The spacing between the port and starboard sails of curvy twin sail was an important parameter. The spacing is 0.035 L, 0.07 L, and 0.14 L shows the lift coefficient reduction because of dramatically stall effect, while flow separation is improved with spacing is 0.21 L, 0.28 L, and 0.35 L. Significantly, the spacing 0.28 L shows the maximum high pressure at the lower area and the small low pressure area at leading edges. Therefore, the highest lift was generated.

Multi-fidelity uncertainty quantification of high Reynolds number turbulent flow around a rectangular 5:1 Cylinder

  • Sakuma, Mayu;Pepper, Nick;Warnakulasuriya, Suneth;Montomoli, Francesco;Wuch-ner, Roland;Bletzinger, Kai-Uwe
    • Wind and Structures
    • /
    • v.34 no.1
    • /
    • pp.127-136
    • /
    • 2022
  • In this work a multi-fidelity non-intrusive polynomial chaos (MF-NIPC) has been applied to a structural wind engineering problem in architectural design for the first time. In architectural design it is important to design structures that are safe in a range of wind directions and speeds. For this reason, the computational models used to design buildings and bridges must account for the uncertainties associated with the interaction between the structure and wind. In order to use the numerical simulations for the design, the numerical models must be validated by experi-mental data, and uncertainties contained in the experiments should also be taken into account. Uncertainty Quantifi-cation has been increasingly used for CFD simulations to consider such uncertainties. Typically, CFD simulations are computationally expensive, motivating the increased interest in multi-fidelity methods due to their ability to lev-erage limited data sets of high-fidelity data with evaluations of more computationally inexpensive models. Previous-ly, the multi-fidelity framework has been applied to CFD simulations for the purposes of optimization, rather than for the statistical assessment of candidate design. In this paper MF-NIPC method is applied to flow around a rectan-gular 5:1 cylinder, which has been thoroughly investigated for architectural design. The purpose of UQ is validation of numerical simulation results with experimental data, therefore the radius of curvature of the rectangular cylinder corners and the angle of attack are considered to be random variables, which are known to contain uncertainties when wind tunnel tests are carried out. Computational Fluid Dynamics (CFD) simulations are solved by a solver that employs the Finite Element Method (FEM) for two turbulence modeling approaches of the incompressible Navier-Stokes equations: Unsteady Reynolds Averaged Navier Stokes (URANS) and the Large Eddy simulation (LES). The results of the uncertainty analysis with CFD are compared to experimental data in terms of time-averaged pressure coefficients and bulk parameters. In addition, the accuracy and efficiency of the multi-fidelity framework is demonstrated through a comparison with the results of the high-fidelity model.

Flow Resistance and Modeling Rule of Fishing Nets -1. Analysis of Flow Resistance and Its Examination by Data on Plane Nettings- (그물어구의 유수저항과 근형수칙 -1. 유수저항의 해석 및 평면 그물감의 자료에 의한 검토-)

  • KIM Dae-An
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.28 no.2
    • /
    • pp.183-193
    • /
    • 1995
  • Assuming that fishing nets are porous structures to suck water into their mouth and then filtrate water out of them, the flow resistance N of nets with wall area S under the velicity v was taken by $R=kSv^2$, and the coefficient k was derived as $$k=c\;Re^{-m}(\frac{S_n}{S_m})n(\frac{S_n}{S})$$ where $R_e$ is the Reynolds' number, $S_m$ the area of net mouth, $S_n$ the total area of net projected to the plane perpendicular to the water flow. Then, the propriety of the above equation and the values of c, m and n were investigated by the experimental results on plane nettings carried out hitherto. The value of c and m were fixed respectively by $240(kg\cdot sec^2/m^4)$ and 0.1 when the representative size on $R_e$ was taken by the ratio k of the volume of bars to the area of meshes, i. e., $$\lambda={\frac{\pi\;d^2}{21\;sin\;2\varphi}$$ where d is the diameter of bars, 21 the mesh size, and 2n the angle between two adjacent bars. The value of n was larger than 1.0 as 1.2 because the wakes occurring at the knots and bars increased the resistance by obstructing the filtration of water through the meshes. In case in which the influence of $R_e$ was negligible, the value of $cR_e\;^{-m}$ became a constant distinguished by the regions of the attack angle $ \theta$ of nettings to the water flow, i. e., 100$(kg\cdot sec^2/m^4)\;in\;45^{\circ}<\theta \leq90^{\circ}\;and\;100(S_m/S)^{0.6}\;(kg\cdot sec^2/m^4)\;in\;0^{\circ}<\theta \leq45^{\circ}$. Thus, the coefficient $k(kg\cdot sec^2/m^4)$ of plane nettings could be obtained by utilizing the above values with $S_m\;and\;S_n$ given respectively by $$S_m=S\;sin\theta$$ and $$S_n=\frac{d}{I}\;\cdot\;\frac{\sqrt{1-cos^2\varphi cos^2\theta}} {sin\varphi\;cos\varphi} \cdot S$$ But, on the occasion of $\theta=0^{\circ}$ k was decided by the roughness of netting surface and so expressed as $$k=9(\frac{d}{I\;cos\varphi})^{0.8}$$ In these results, however, the values of c and m were regarded to be not sufficiently exact because they were obtained from insufficient data and the actual nets had no use for k at $\theta=0^{\circ}$. Therefore, the exact expression of $k(kg\cdotsec^2/m^4)$, for actual nets could De made in the case of no influence of $R_e$ as follows; $$k=100(\frac{S_n}{S_m})^{1.2}\;(\frac{S_m}{S})\;.\;for\;45^{\circ}<\theta \leq90^{\circ}$$, $$k=100(\frac{S_n}{S_m})^{1.2}\;(\frac{S_m}{S})^{1.6}\;.\;for\;0^{\circ}<\theta \leq45^{\circ}$$

  • PDF

Study of the Incremental Dynamic Inversion Control to Prevent the Over-G in the Transonic Flight Region (천음속 비행영역에서 하중제한 초과 방지를 위한 증분형 동적 모델역변환 제어 연구)

  • Jin, Tae-beom;Kim, Chong-sup;Koh, Gi-Oak;Kim, Byoung-Soo
    • Journal of Aerospace System Engineering
    • /
    • v.15 no.5
    • /
    • pp.33-42
    • /
    • 2021
  • Modern aircraft fighters improve the maneuverability and performance with the RSS (Relaxed Static Stability) concept and therefore these aircrafts are susceptible to abrupt pitch-up in the transonic and moderate Angle-of-Attack (AoA) flight region where the shock wave is formed and the mean aerodynamic center is moved forward during deceleration. Also, the modeling of the aircraft flying in this flight region is very difficult due to complex flow filed and unpredictable dynamic characteristics and the model-based control design technique does not fully cover this problem. In this paper, we analyzed the performance of the TPMC (Transonic Pitching Moment Compensation) control based on the model-based IDI (Incremental Dynamic Inversion) and the Hybrid IDI based on the model and sensor based IDI during the SDT (Slow Down Turn) in transonic region. As the result, the Hybrid IDI had quicker response and the same maximum g suppression performance and provided the predictable flying qualities compared to the TPMC control. The Hybrid IDI improved the performance of the Over-G protection controller in the transonic and moderate AoA region

Estimation of Maneuverability of Underwater Vehicles with Ahead Propeller by the Vertical Planar Motion Mechanism Test (VPMM 시험을 통한 선수부에 프로펠러를 갖는 수중운동체의 조종성능 추정)

  • Shin, Myung-Sub;Kim, Dong-Hwi;Kim, Yagin;Hwang, Jong-Hyon;Baek, Hyung-Min;Kim, Sung-Jae;Park, Sang-Jun;Choi, Young-Myung;Park, Hongrae;Kim, Eun-Soo
    • Journal of Navigation and Port Research
    • /
    • v.46 no.3
    • /
    • pp.168-178
    • /
    • 2022
  • In this study, the resistance test, the vertical static angle of the attack test and VPMM test will be conducted to estimate the maneuverability of underwater vehicles with ahead propeller. The vertical static test will be conducted within the range of -40deg to 40deg, to investigate the cross-flow drag at high incidence angles. The tests will be conducted by dividing the propeller rotation into a case in which the propeller rotates at a specific rpm, and a case in which the propeller rotates naturally, according to the towing speed. Hydrodynamic coefficients of vertical direction will be estimated by the captive model tests. Additionally, the vertical dynamic stability index based on estimated hydrodynamic coefficients will be calculated and the impact of the propeller revolution state on the index will be investigated. The results are expected to be used as reference test data for underwater vehicles with ahead propeller.