• Title/Summary/Keyword: Flow around a Body

Search Result 306, Processing Time 0.029 seconds

전자기력을 이용한 유동제어에 관한 수치해석적 연구 (Numerical Investigation of Cross- Flow of a Circular Cylinder Under an Electromagnetic Force)

  • 김성재;이정묵
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 춘계학술대회논문집E
    • /
    • pp.148-153
    • /
    • 2001
  • A computational investigation of the effect of the electromagnetic force(or Lorentz force) on the flow behavior around a circular cylinder, a typical model of bluff bodies, is conducted. Two-dimensional unsteady flow computation for $Re=10^2$ is carried out using a numerical method of finite difference approximation in a curvilinear body-fitted coordinate system by solving the momentum equations including the Lorentz force as a body force. The effect of the spatial variations of the Lorentz forcing region and forcing direction along the cylinder circumference is investigated. The numerical results show that the Lorentz force can effectively suppress the flow separation and oscillation of the lift force of the circular cylinder cross-flow, leading to the reduction of the drag.

  • PDF

선수주위 쇄파현상의 수치시뮬레이션에 관한 기초연구 (A FUNDAMENTAL STUDY ON THE NUMERICAL SIMULATION OF WAVE BREAKING PHENOMENON AROUND THE FORE-BODY OF SHIP)

  • 엄태진;이영길;정광열
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2005년도 추계 학술대회논문집
    • /
    • pp.195-199
    • /
    • 2005
  • Wave breaking phenomenon near the fore body of a ship is numerically simulated. The ship advance with uniform velocity in calm water. For the simulation, incompressible Navier-Stokes equations and continuity equation are adopted as governing equations. The simulation is carried out in staggered variable mesh system with finite difference method. Marker and Cell(MAC) method and Marker-Density method are employed to track the free surface. Body boundary conditions are satisfied with the adoption of porosity method and no-slip condition on the hull surface. The ship model has a wedge type fore-body, and the computational domain is an appropriate region around the fore-body. The computation results are compared with some experimental results. Also the difference of the free surface tracking methods are discussed.

  • PDF

선체주위 난류유동장의 해석에 관한 연구 (A Study on Turbulent Flow Fields around Ships)

  • 박종진;이승희
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 1995년도 추계 학술대회논문집
    • /
    • pp.148-153
    • /
    • 1995
  • Three dimensional turbulent flow fields around ships are simulated by a numerical method. Reynolds Averaged Navier-Stokes equations are used where Reynolds stresses are approximated by Baldwin-Lomax and Sub-Grid Scale(SGS) turbulence models. Body-fitted coordinate system is introduced to conform three dimensional ship geometries. The governing equations are discretized by a finite volume method. Temporal derivatives are approximated by the forward differencing and the convection terms are approximated by the QUICK or Kawamura scheme. The 2nd-order centered differencing is used for other spatial derivatives. Pressure and velocity fields are simultaneously iterated by the Highly Simplified Marker-And-Cell method. To verity the numerical method and turbulence models, flow fields around ships are simulated and compared to the experiments.

  • PDF

플랩이 부착된 타 주위 유동장의 가시화 (Visualization of Flow Fields Around a Flapped Rudder)

  • 김성동;김진구;이경우;최민선;조대환
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2000년도 추계학술대회논문집B
    • /
    • pp.615-620
    • /
    • 2000
  • Manoeuvrability of ships has been receiving a great deal of attention both concerning navigation safety and the prediction of ship manoeuvring characteristics, especially at the preliminary design stage. Recently, in order to improve manoeuvrability of ships, High-lift devices could be applied to design of rudder at design stage. Now, among the them, we carried out the flow visualization and investigation of flow field around a flapped rudder(trailing-edge flap). A trailing-edge flap is simply a portion of the trailing-edge section of airfoil that is hinged and which can be deflected upward or downward. Flow visualization results of flap defection shown as follow Photos including main body and flap defection.

  • PDF

날개 주위의 비정상 박리 현상에 관한 연구 (A Computational Study on Vortex Shedding around a Hydrofoil)

  • 김우전
    • 대한조선학회논문집
    • /
    • 제32권3호
    • /
    • pp.51-61
    • /
    • 1995
  • 비정상 층류 유동을 위한 수치 계산법이 개발되었다. 정규 격자계와 유한 차분법이 이용되었고, 압력-Poisson 방법을 이용하여 매시간 지배 방정식을 만족하는 속도장이 구해졌다. 우선 계산 방법의 검증을 위해 원통 주위의 유동이 계산되었고, 그리고 날개 단면 주위에서 자연적으로 발생하는 비정상 박리 형상을 계산하였다. 계산 결과는 유선형 물체 주위의 층류 박리의 비정상성을 잘 보여주고 있다.

  • PDF

중첩된 격자계를 사용한 움직이는 물체의 해석 (Prediction of Some Moving-Body Problems Using Overlapped Grid System)

  • 이진규;장근식
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 1998년도 춘계 학술대회논문집
    • /
    • pp.82-89
    • /
    • 1998
  • There are many moving-body problems to be solved, the solution of which necessary for proper design of flight vehicles in aerospace industry. Since a body moves relative to other bodies in the category of these problems, difficulty arises regarding both generation of computational grid around the body in motion and conservation of flow properties in the moving grid system. A few example could be store separation from the aircraft and relative vibration of multiple bodies in the high-speed flow passage. In this paper we report on the progress made in computing moving-body aerodynamics related with sabot separation characteristics. Conservative overlapping grid together with cell-merging-unmerging technique is used to solve the Euler equations for a body in high-speed motion. Carbuncle errors has to be removed before we obtain physically adequate solution. Two-dimensional application is reported here.

  • PDF

A numerical simulation method for the flow around floating bodies in regular waves using a three-dimensional rectilinear grid system

  • Jeong, Kwang-Leol;Lee, Young-Gill
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제8권3호
    • /
    • pp.277-300
    • /
    • 2016
  • The motion of a floating body and the free surface flow are the most important design considerations for ships and offshore platforms. In the present research, a numerical method is developed to simulate the motion of a floating body and the free surface using a fixed rectilinear grid system. The governing equations are the continuity equation and Naviere-Stokes equations. The boundary of a moving body is defined by the interaction points of the body surface and the centerline of a grid. To simulate the free surface the Modified Marker-Density method is implemented. Ships advancing in regular waves, the interaction of waves by a fixed circular cylinder array and the response amplitude operators of an offshore platform are simulated and the results are compared with published research data to check the applicability. The numerical method developed in this research gives results good enough for application to the initial design stage.

Flow structures around a three-dimensional rectangular body with ground effect

  • Gurlek, Cahit;Sahin, Besir;Ozalp, Coskun;Akilli, Huseyin
    • Wind and Structures
    • /
    • 제11권5호
    • /
    • pp.345-359
    • /
    • 2008
  • An experimental investigation of the flow over the rectangular body located in close proximity to a ground board was reported using the particle image velocimetry (PIV) technique. The present experiments were conducted in a closed-loop open surface water channel with the Reynolds number, $Re_H=1.2{\times}10^4$ based on the model height. In addition to the PIV measurements, flow visualization studies were also carried out. The PIV technique provided instantaneous and time-averaged velocity vectors map, vorticity contours, streamline topology and turbulent quantities at various locations in the near wake. In the vertical symmetry plane, the upperbody flow is separated from the sharp top leading edge of the model and formed a large reverse flow region on the upper surface of the model. The flow structure downstream of the model has asymmetric double vortices. In the horizontal symmetry plane, identical separated flow regions occur on both vertical side walls and a pair of primary recirculatory bubbles dominates the wake region.

Investigation of passive flow control on the bluff body with moving-belt experiment

  • Rho, Joo-Hyun;Lee, Dongho;Kim, Kyuhong
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제17권2호
    • /
    • pp.139-148
    • /
    • 2016
  • The passive control methods such as horizontal and vertical fences on the lower surface of the bluff body were applied to suppress the vortex shedding and enhance the aerodynamic stability of flow. For investigating the effects of the passive control methods, wind tunnel experiments on the unsteady flow field around a bluff body near a moving ground were performed. The boundary layer and velocity profiles were measured by the Hot Wire Anemometer (HWA) system and the vortex shedding patterns and flow structures in a wake region were visualized via the Particle Image Velocimetry (PIV) system. Also, it is a measuring on moving ground condition that the experimental values of the critical gap distances, Strouhal numbers and aerodynamic force FFT analyses. Through the experiments, we found that the momentum supply due to moving ground caused the vortex shedding at the lower critical gap distance rather than that of fixed ground. The horizontal and vertical fences increase the critical gap distance and it can suppress the vortex shedding. Consequently, the stability characteristics of the bluff body near a moving ground could be effectively enhanced by the simple passive control such as the vertical fences.

인접한 두 수중운동체 주위의 유동 해석을 위한 가상경계법의 적용 (APPLICATION OF AN IMMERSED BOUNDARY METHOD TO SIMULATING FLOW AROUND TWO NEIGHBORING UNDERWATER VEHICLES IN PROXIMITY)

  • 이경준;양경수
    • 한국전산유체공학회지
    • /
    • 제18권1호
    • /
    • pp.49-57
    • /
    • 2013
  • Analysis of fluid-structure interaction for two nearby underwater vehicles immersed in the sea is quite challenging because simulation of flow around them is very difficult due to the complexity of underwater vehicle shapes. The conventional approach using body-fitted or unstructured grids demands much time in dynamic grid generation, and yields slow convergence of solution. Since an analysis of fluid-structure interaction must be based on accurate simulation results, a more efficient way of simulating flow around underwater vehicles, without sacrificing accuracy, is desirable. An immersed boundary method facilitates implementation of complicated underwater-vehicle shapes on a Cartesian grid system. An LES modeling is also incorporated to resolve turbulent eddies. In this paper, we will demonstrate the effectiveness of the immersed boundary method we adopted, by presenting the simulation results on the flow around a modeled high-speed underwater vehicle interacting with a modeled low-speed one.