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Abstract

A numerical method was developed to solve the Navier-Stokes equations for
unsteady laminar flow around a hydrofoil The present method wused the
finite-difference scheme in the collocated grid system and the pressure-Poisson method
was employed to obtain divergence-free velocity field each time step. The numerical
method was applied at first to laminar flow around a circular cylinder to confirm
capability of the code. In the next, calculations were carried out for a hydrofoil in an
unbounded fluid at the Reynolds number of 10° in order to investigate unsteady
phenomena with vortex shedding. The calculated results showed reasonable features
about laminar vortex shedding around a streamlined body.
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1. Introduction

In numerical simulation or modeling of
viscous incompressible flows, much effort has
been directed to obtaining steady-state
solutions of the unsteady Navier-Stokes
equations using the so-called time-marching
techniques in which time serves as an iteration
parameter. .

The main difficulty in calculating unsteady
incompressible flows arises from the fact that
the continuity equation is not a time-evolution
equation, but rather a constraint that is
imposed to obtain a divergence-free velocity
field. Most methods for solving unsteady flow
equations written in primitive variables can be
classified into three groups. The first is the
pressure-Poisson method, originally introduced
by Harlow and Welch(1], in which a pressure
equation, derived by taking the divergence of
the momentum equations and requiring
satisfaction of continuity equation at the new
time, is solved. Recently Ohya et al.[2] used
this method to calculate flow around
rectangular plates. The second method is the
fractional method, proposed first by Chorin(3],
in which an intermediate (between the current
and the new time step) velocity field is
calculated from the momentum equations
without a pressure gradient term, and pressure
is solved to ensure that the intermediate
velocity is divergence-free. This method was
applied recently by Kim and Moin[4], Biringen
and Danabasoglulb], Rosenfeld et al[6], and
Hung and Moin[7]. The third method is the
pseudo-time  iteration  (dual-time-stepping)
method which was used by Soh and
Goodrich[8], Rogers and Kwak[9] in
conjunction with the artificial compressibility
method. In this approach, iterations are
performed in pseudo-time level until a
divergence-free velocity field is obtained at
each physical time step.  Athavale[10] has
recently extended the dual-time-step method to
the three-dimensional unsteady flow.
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In the present paper a numerical method that
solves the unsteady Navier-Stokes equations
using the pressure-Poisson method, based on
finite-difference schemes in a collocated grid
system, is presented. The time-accurate
solution was sought for flow around a circular
cylinder for the validation of the numerical
method. Finally, the flow around a hydrofoil at
the Reynolds number of 10° was solved to
investigate naturally occurring unsteadiness
with vortex shedding.

2. Numerical methods

2.1 Governing equations

In the present study only two-dimensional
problems are solved, but for generality,
mathematical formulation is presented in
three-dimensional curvilinear coordinates using
tensor notation. Consider the equations of fluid
motion in Cartesian coordinates (x,y,2z) for
unsteady, three~dimensional turbulent flow of
an incompressible fluid, where x denotes the
inflow direction, y the vertical direction and
origin is located at the mid-chord point of foil
section. The Navier-Stokes equations, in
non-dimensional form, can be written in
Cartesian tensor notation as follows, where
x;=(x,v,2) and w;=(u,v, w).

Continuity equation

au,, .
7, O (1
Momentwn transport equations

au;+ du; __ 3

o | 9% A gz,
3t " “ox; ox; tRe VU @)

The summation convention is used, ie., all
the terms having repeated indices such as j
and % of (2) should be summed. It should be
noted that, for Cartesian tensors, there is no
distinction between contravariant and covariant
components. The equations are
non-dimensionalized by a characteristic length
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L, ( chord length of a foil section (C) is
chosen in the present study), a reference
velocity U, ( speed of uniform incoming flow),
and the density of fluid p. The Reynolds
number is defined by Re= U,L,/v , where v
represents kinematic viscosity.

The grid system was generated using
Knight’s method(11], the details of which can
be found in Kim[12]. With the body-fitted
coordinate system determined, the transport
equations in the physical space (x, y,2) are to
be transformed into those in the computational
domain (&, 7,0).
generalized coordinates are given by

Continuity equation

The governing equations in

] ag (]U"‘)—] 35 =5 (bPu) =0 3
Momentum transport equations
e R Ly L A )

o8 T Y%
where the contravariant velocity components

are defined by U*= % bfu; , and the definition

of geometrical coefficients can be also found in
Kim[12].

2.2 Discretization

In the finite-difference  schemes the
derivatives with respect to spatial and temporal
variables are approximated using difference
forms. It is easier to represent these
difference forms of the first order spatial
derivative in operator notation as follows.

_=%_[ ( )k—Z—G( )k—l+3( )/(+2( )Ie+l]

(3rd order backward-biased)
=50 =20 2030 060 Jpar—( i)

(3rd order forward-biased)
=40 = et el

(2nd order central)
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(1/2-interval 2nd order central)

The convection terms are discretized using
the so-called “upwind scheme” and the
diffusion terms are central-differenced. The
Euler-implicit method is applied for the time
integration  after local linearization  of
convection coefficients. The discretized
momentum equations are

n+1
ﬁ—d;—'ﬂ— 1(U"+|U"|) Salal™)

FE (U= LU )" 8™ ==L 6t (0™

[ 7 (3 )+ NG +78 ol )]

where NO(u)=g"3 (8 () (k) (5

The superscripts =n, n+1  represents the
present and the next time step, respectively. It
should be noted that some of source terms are
lagged.

The discretized momentum transport
equations (5) were solved using a
Peaceman-Rachford type ADI method until
convergence for each time step. The implicit
method in each direction results in the
penta-diagonal matrices, for which a highly
vectorized solver is available.

2.3 Velocity-pressure coupling

If the pressure is known, equation (5) can be
employed to solve equations (4) for (u, v, w).
However, the pressure is not known a priori
and must be determined by requiring velocity
field to satisfy the continuity equation (3). In
the present study, an additional derivative of
pressure is artificially added to the continuity
equation to make the pressure equation solver
efficient, where r represents a pseudo-time
variable for iteration process of the pressure
equation and is nothing to do with the real
time t. After the pressure-Poisson equation
converges with pseudo-time iteration for each
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physical(real) time step, the pressure field, that
guarantees divergence-free velocity field in the
next time step, is obtained, i.e.,

%gg+§§f—;<bfu.~> =0 (6)
where 8 means an artificial speed of pressure
wave propagation. The value of 8 is
dependent upon flow characteristics and the
numerical method and commonly taken
between 0.001 and 1000. In the present
calculation 1.0 was chosen after several
trial-and-errors.

Once velocity components are obtained from
the momentum equations, the pressure field in
the next time step is obtained to project the
velocity field into divergence-free one in the
next time step, i.e.,

N R n+]
a = u;*—% bzﬁg—g— )
where #'=u'—4 U’iz-‘-’;—-—l—vzu» ”
i i 65’ Re i

Substitution of equation (7) into (6) gives

1 (™' —p™ 1.8 5Op™
8 ar T 3¢ (M'g EY ]

=-§5%;{bfﬁr} @®)

where m represents a pseudo-time or
iteration time step introduced only for
convenience. The pseudo-time increment Ar
in pressure equation (8) should be considered
as an iteration variable which acts like a
relaxation parameter to control the speed of

change of pressure field along with B. After

converging with respect to -m-iteration, »™"!

becomes p"*!.
that m~th pseudo-time step is nothing to do
with n-th real time step and serves only as an
internal iteration loop for the given n-th real

time level. Using an operator form,
m+1

1l
B 4

_Jj afn{fdtgkiag (pm+l)}=0

It should be mentioned again

—p” 1 n
. +785~{bfu,-}
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However, the above equation has two
consecutive 2nd order central differences of
one-interval form appearing in the last term.
This arrangement decouples pressure variables
at adjacent grid locations, which results the
well-known "checker-board” problem
(oscillatory pressure field). The staggered grid
system having four different locations for
variables has been employed to avoid such a
problem. However, the staggered grid system
is complicated to code and is not very
appropriate for the vectorization, or multi-grid
acceleration since all the geometric coefficients
should be stored for four different locations,
otherwise calculated each time step or
interpolated from adjacent values. Thus, the
collocated (non-staggered or regular) grid
system in which all four variables are defined
at the same location is employed in the present
numerical method. In the collocated grid
system an extra care should be taken to avoid
oscillatory pressure field.

In the present study, the fourth order
artificial dissipation is added in the way of
Sotiropoulos et al[l3], ie., the spatial
derivative of the pressure equation (8) is
approximated using the combination of
1/2-interval and one-interval formulation as
follows.

g (JA tg"”ﬁ’fi)

Frd EY
= (1_6) me+l+€l":pm+l +Npm+l
where

~

L=8a(Jdtg”s ), L=35(Jdtg" 3 )
N=08J4t"s ) (k#7)

and & is a dissipation parameter. The
dissipation is not added for &=0, resulting in
a one-interval formulation with an oscillatory
pressure field and =1 results in a
1/2-interval formulation with the artificial

4 .
dissipation of %(]Atg””)ﬁ—‘[)% approximately,
£
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see Sotiropoulus et al.[13] for details. Thus,
the resulting pressure equation is written by

%iﬂ_%r;ﬂ_%[ (1—&)Lp™*!

reLpmamp] =—Louetan @

For convenience, the delta form of the above
equation is used with the definition of

Apm+l — pm+1 - pm

Equation (9) becomes

L m+l_l _ m+1 >~ pamtl
a7 40 ][ (1—€) Lap™ ' +eLap

+N2p] == Lo ot an

+-}—[ (1—e) Lp™+eLp™+Np™} (10
To keep tri-diagonal characteristics, put

=1 only on the left-hand-side (LHS) of the

equation (10) and N(d4p™"') is ignored. This
approximation does not affect the converged

m+1

solution since 4p™ ' =0 after converging for

the n-th real time step. Thus (10) becomes
T s ey
5 dr Ldp™) RHS an
=—8u(bf ul)+[ (1~—e) Lp™+elp™+Np™]

The approximate-factorizing is applied to the
left-hand-side(LHS) of (11).

(1-£ad 34sate"5,)] )

{1—-§Ar[ 5,(J41828,)] | 12)

{1— gi dr[ §(J4tg®8,)) }(Ap”'“) =~§ArRHS

Thus, tri-diagonal matrices were solved
three times in each direction to get Jp™*L.
After converging (4p™t'=0), p"*! =pm*!
provides the pressure field which guarantees
the divergence-free velocity field at the
(n+1)-th time step.

2.4 Boundary conditions

With the fully-elliptic momentum transport

KREEAEREIRIE F 32 B F 3 %K 1995% 8/

equations, it is necessary to specify boundary
conditions on all boundaries. In the present
study C-type grid topologies were chosen,
thus, boundaries of the physical domain
consist of an outer boundary, a body boundary,
an exit and a branch cut in wake. Along the
branch cut four grid points (two points from
each side) were overlapped to ensure the
continuous change of flow variables across the
branch cut. No slip condition is applied to the
foil surface since the unsteadiness naturally
occurring from the body at rest is of concermn
in the present study. Uniform flow was
specified for the outer boundary and the
downstream velocities are extrapolated.

3. Resuits and discussion

The numerical methods described in the
previous section were applied to simulate
vortex shedding near a circular cylinder of the
Reynolds number of 200, which is commonly
considered as a test case for naturally
occurring  unsteadiness, to validate the
numerical method. In the next, flow around a
NACAO0012 section of the Reynolds number 10°
was simulated since some steady calculations
appeared in the literature, although there was
found some experimental evidence of vortex
shedding. In the sequel, computed results are
shown and discussed with an emphasis of
vortex shedding.

3.1 Flow near a circular cylinder

The periodic vortex shedding behind a bluff
body exposed to a uniform flow has been
frequently used to test the time accuracy of
numerical codes. For example, prediction of
the Strouhal number of vortex shedding behind
a circular cylinder was attempted by Leconite
and Piquet[14], Rosenfeld et al.[15], and Rogers
and Kwak[9], As a test of the present
numerical method, the flow around a circular
cylinder at Re=200 was considered. This
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calculation started from the initial Blasius
solution distributed along the cylindrical
surface. No artificial triggering mechanism
other than truncation error was applied. The
grid was generated from the solutions of
Poisson equations. A C-type grid system with
149 points in ¢&-direction and 45 points in 7
-direction was employed, the partial view of
which is shown in figure 1.

Time increment used for the present
calculation was 0.025 and time history of lift
and drag coefficients are shown in figure 2. It
should be mentioned that time accuracy was
not sought for the first 3000 iteration to reduce
CPU time.
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Fig.1 A partial view of grids generated for a
circular cylinder
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Fig.2 Time history of lift and drag coefficients
of a circular cylinder at Re=200
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Periodicity of the lift and drag coefficients
implies the time accuracy of the present
method. Lift coefficients had the period of 5,
implying the Strouhal number of 0.2, while
drag coefficients had the period of 25.
Strouhal number and lift and drag coefficients
are compared with experiment and other
calculations in table 1. Lift coefficients and
Strouhal number agreed with experiments and
other calculation, although fluctuating
components of the drag coefficient was
overpredicted.

Table 1 Lit and drag coefficients for circular
cylinder at Re=200

Co C. St
Willef{16] (exp) 13
Kovasznay[17)(exp) 0.19
Roshkol[8] (exp) 0.19
Lecointe&Piquet[14] 1.58:0.0035 050 0.194
Rosenfeld et al.[15] 1.40+0.04 1070  0.201
Rogers&Kwak([9] 1.23:0.05 1065  0.185
The present method 1.05:0.12 +0.73 020

Flow patterns at the time of maximum and
minimum lift are shown in figure 3 and 4.
Time symmetry is observed between two
figures, implying the capability of the present
numerical method for unsteady flow.
Streamwise velocity contours are showing a
big separated region of flow reversal as
denoted to by dashed lines in the figures and
the trail of wake moves up and down. It is
also seen that vertical velocity components
have a series of sign change in wake, implying
vortex shedding. Streamlines drawn from
flow vectors clearly show vortex shedding
behind a circular cylinder. It should be noted
that flow pattern at the time of maximum lift
has profiles symmetric to that of minimum lift
with respect to x-axis.

Transactions of SNAK, Vol 32, No. 3, August 1995



A Computational Study on Vortex Shedding around a Hydrofoil 37

contour interval: 0.1

ntour:
2 U-co S

ZIN

2)

L) i LY YO 5 8

X

2 V-contours contour interval: 0.1

»
N
2
(=2
il g
W
o
o
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Fig. 4 Flow patterns around a circular cylinder
at the time of minimum lift
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Fig. 5 A partial view of grids generated for a
NACAQ012 section ( a=5" )

3.3 Flow around a hydrofoil

A NACAQ012 section of Reynolds number
10 was taken as a test case in several
previous studies, for example, see Obashi and
Chen[19], Kim and Van[20], Lee et al[21], and
Van et al.[22]. However, most of them did not
pay much attention to unsteadiness of the flow
including  vortex  shedding. It is
experimentally proven that a series of vortices
are shedded behind a streamlined body as well
as a bluff body for low Reynolds number.
Ikehata and Suzuki[23] presented photographs
showing vortex shedding phenomena around a
NACAQ012 and 0015 section of Reynolds
number 7000 or 14000. In the present study
the numerical simulation of naturally unsteady
flow with vortex shedding around a NACAQQ12
section was carried out at the Reynolds
number of 10%.

Three angles of attack of 0° , 5 , and 10°
were selected for the calculation. Figure 5
shows a partial view of grid system used for

the case of a=5° The calculation was



58 Wu Joan Kim

carried out with 149X45 grids covering the
computational domain of -5<X<7 and -5<Y<5.

The lift and drag coefficients were plotted o4y U-comours contourinerva: 0.1
against time for the three angles of attack in o
figure 6. Y:, =
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Fig. 9 Flow patterns around a hydrofoil at the
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Calculated Strouhal numbers are 2.13, 1.72,
and 083 for 0° , 5", and 10° , respectively.
Initially Blasius solution was given and
time—~accurate solution was sought at each time
step with the time increment of 0.0].
Unsteadiness appeared at non-dimensional time
of 5.0 and periodicity was observed after 15.
It should be mentioned that no artificial
triggering was applied other than truncation
error. Flow patterns at the time of maximum
and minimum lift are shown in figure 7 and 8
It is clearly seen that vortices
were shedded even for zero angle of attack, as
noted by Ikehata and Suzuki[23]. Time
symmetry of the flow was well simulated,
showing the capability of the present method.
Figure 9 and 10 has the flow patterns of

for a=0°

a=5° The region of flow reversal is smaller
at the time of maximum lift than at the time
of minimum lift. It should be noted that four
grid points were overlapped along the branch
cut of C-type grid system in wake to ensure
transfer of flow information across the branch
cut. In case of e=10°, flow pattern becomes
more complicated and has stronger vortex
formation, as shown in figure 11 and 12. As
noted by Van et all[22], several vortices were
formulated along the suction side of foil. It is
interesting that vertical velocity has strong
upward components at the time of minimum
lift, while it has small downward components
at the time of maximum lift.

4. Concluding remarks

A numerical method for the solution of
unsteady two-dimensional Navier-Stokes
equations was developed. The collocated (non-
staggered) grid system was employed along
with the finite-difference (the 3rd order
upwind-biased scheme) discretization. The
time-accuracy of the solution was ensured
using the pressure-Poisson method. At first,
flow around a circular cylinder was solved for
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Re=200 to wvalidate the present numerical
method. Calculated results agreed reasonably
with the experiment and other -calculations.
In the next, the vortex shedding around a
NACAQ012 section at Re=10" was simulated.
It is clearly shown that flow unsteadiness can
happen naturally for the laminar flow not only
around a bluff body but also near a
streamlined body and the present numerical
method is very useful to simulate such flows.
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