• 제목/요약/키워드: Flow Resistivity

검색결과 274건 처리시간 0.025초

분위기 가스에 따른 IZO 박막의 구조적 및 전기적 특성 (Structural and electrical characteristics of IZO thin films deposited under different ambient gases)

  • 이유림;이규만
    • 반도체디스플레이기술학회지
    • /
    • 제9권3호
    • /
    • pp.53-58
    • /
    • 2010
  • In this study, we have investigated the effect of the ambient gases on the characteristics of IZO thin films for the OLED (organic light emitting diodes) devices. For this purpose, IZO thin films were deposited by RF magnetron sputtering under various ambient gases (Ar, $Ar+O_2$ and $Ar+H_2$) at $150^{\circ}C$. In order to investigate the influences of the oxygen and hydrogen, the flow rate of oxygen and hydrogen in argon mixing gas has been changed from 0.1sccm to 0.5sccm, respectively. All the samples show amorphous structure regardless of ambient gases. The electrical resistivity of IZO film increased with increasing flow rate of $O_2$ under $Ar+O_2$ while under $Ar+H_2$ atmosphere the electrical resistivity showed minimum value near 0.5sccm of $H_2$. All the films showed the average transmittance over 85% in the visible range. The OLED device was fabricated with different IZO substrates made by configuration of IZO/${\alpha}$-NPD/DPVB/$Alq_3$/LiF/Al to elucidate the performance of IZO substrate. OLED devices with the amorphous-IZO (a-IZO) anode film show better current densityvoltage-luminance characteristics than that of OLED devices with the commercial crystalline-ITO (c-ITO) anode film. It can be explained that very flat surface roughness and high work function of a-IZO anode film lead to more efficient hole injection by reduction of interface barrier height between anode and organic layers. This suggests that a-IZO film is a promising anode materials substituting conventional c-ITO anode in OLED devices.

실험 부지에서의 지질구조 파악을 위한 물리탐사 및 물리검층 (Geophysical Exploration and Well Logging for the Delineation of Geological Structures in a Testbed)

  • 유희은;신제현;김빛나래;조아현;이강훈;편석준;황세호;유영철;조호영;남명진
    • 한국지하수토양환경학회지:지하수토양환경
    • /
    • 제27권spc호
    • /
    • pp.19-33
    • /
    • 2022
  • When subsurface is polluted, contaminants tend to migrate through groundwater flow path. The groundwater flow path is highly dependent upon underground geological structures in the contaminated area. Geophysical survey is an useful tool to identify subsurface geological structure. In addition, geophysical logging in a borehole precisely provides detailed information about geological characteristics in vicinity of the borehole, including fractures, lithology, and groundwater level. In this work, surface seismic refraction and electrical resistivity surveys were conducted in a test site located in Namyangju city, South Korea, along with well logging tests in five boreholes installed in the site. Geophysical data and well logging data were collected and processed to construct an 3D geological map in the site.

Characteristics of Photoresist-derived Carbon Nanofibers for Li-ion Full Cell Electrode

  • Kim, Hwan-Jun;Joo, Young-Hee;Lee, Sang-Min;Kim, Chang-Il
    • Transactions on Electrical and Electronic Materials
    • /
    • 제15권5호
    • /
    • pp.265-269
    • /
    • 2014
  • Carbon nanofiber electrode has been fabricated for energy storage systems by the electrospinning of SU-8 precursor and subsequent pyrolysis. Various parameters including the applied voltage, the distance between syringe tip and target collector and the flow rate of the polymer affect the diameter of SU-8 electrospun nanofibers. Shrinkage during pyrolysis decreases the fiber diameter. As the pyrolysis temperature increases, the resistivity decreases dramatically. Low resistivity is one of the important characteristics of the electrodes of an energy storage device. Given the advantages of carbon nanofibers having high external surface area, electrical conductivity, and lithium intercalation ability, SU-8 derived carbon nanofibers were applied to the anode of a full lithium ion cell. In this paper, we studied the physical properties of carbon fiber electrode by scanning transmission microscopy, thermal gravimetric analysis, and four-point probe. The electrochemical characteristics of the electrode were investigated by cyclic voltammogram and electrochemical impedance spectroscopy plots.

Development of Diamond-like Carbon Film as Passivation Layers for Power Transistors

  • Chang, Hoon;Lee, Hae-Wang;Chung, Suk-Koo;Shin, Jong-Han;Lim, Dae-Soon;Park, Jung-Ho
    • The Korean Journal of Ceramics
    • /
    • 제3권2호
    • /
    • pp.92-95
    • /
    • 1997
  • Because of the novel characteristics such as chemical stability, hardness, electrical resistivity and thermal conductivity, diamond-like carbon (DLC) film is a suitable material for the passivation layers. For this purpose, using the PECVD, DLC films were synthesized at room temperature. The adhesion and the hardness of the DLC films deposited on Si an SiO2 substrate were measured. The resistivity of 5.3$\times$$10^8$$\Omega$.cm was measured by automatic spreading resistance probe analysis method. The thermal conductivities of different DLC films were measured and compared with that of phospho silicate glass (PSG) film which is commonly used as passivation layers. The thermal conductivity of DLC film was improved by increasing hydrogen flow rate up to 90 sccm and was better than that of PSG film. The patterning techniques of the DLC film developed using the RIE and the lift-off method to form 5$\mu\textrm{m}$ line. Finally, the thermal characteristics of the power transistor with the DLC film as passiviation layer was analyzed.

  • PDF

질화탄탈 박막형 스트레인 게이지의 제작과 특성 (Fabrication and Characteristics of Tantalum Nitride Thin-Film Strain Gauges)

  • 정귀상;우형순;김순철;홍대선
    • 센서학회지
    • /
    • 제13권4호
    • /
    • pp.303-308
    • /
    • 2004
  • This paper descibes on the characteristics of Ta-N(tantalum nitride) ceramic thin-film strain gauges which were deposited on Si substrates by DC reactive magnetron sputtering in an argon-nitrogen atmosphere (Ar-$(4{\sim}16%)N_{2}$) for high-temperature applications. These films were annealed in $2{\times}10^{-6}$ Torr vacuum furnace at the range of $500{\sim}1000^{\circ}C$. Optimum deposition atmosphere and annealing temperature were determined at $900^{\circ}C$ for 1 hr. in 8% $N_{2}$ gas flow ratio. Under optimum formation conditions, the Ta-N thin-film for strain gauges was obtained a high-resistivity of $768.93{\mu}{\Omega}{\cdot}cm$, a low temperature coefficient of resistance (TCR) of -84 ppm/$^{\circ}C$ and a good longitudinal gauge factor (GF) of 4.12.

Evaluation of incorporating metakaolin to evaluate durability and mechanical properties of concrete

  • Joshaghani, Alireza;Moeini, Mohammad Amin;Balapour, Mohammad
    • Advances in concrete construction
    • /
    • 제5권3호
    • /
    • pp.241-255
    • /
    • 2017
  • Concrete is known to be the most used construction material worldwide. The environmental and economic aspects of Ordinary Portland Cement (OPC) containing concrete have led research studies to investigate the possibility of incorporating supplementary cementitious materials (SCMs) in concrete. Metakaolin (MK) is one SCM with high pozzolanic reactivity generated throughout the thermal activation of high purity kaolinite clay at a temperature ranging from $500^{\circ}C$ to $800^{\circ}C$. Although many studies have evaluated the effect of MK on mechanical properties of concrete and have reported positive effects, limited articles are considering the effect of MK on durability properties of concrete. Considering the lifetime assessment of concrete structures, the durability of concrete has become of particular interest recently. In the present work, the influences of MK on mechanical and durability properties of concrete mixtures are evaluated. Various experiments such as slump flow test, compressive strength, water permeability, freeze and thaw cycles, rapid chloride penetration and surface resistivity tests were carried out to determine mechanical and durability properties of concretes. Concretes made with the incorporation of MK revealed better mechanical and durability properties compared to control concretes due to combined pozzolanic reactivity and the filler effect of MK.

Direct Printing and Patterning of Highly Uniform Graphene Nanosheets for Applications in Flexible Electronics

  • 구자훈;이태윤
    • 한국재료학회:학술대회논문집
    • /
    • 한국재료학회 2011년도 춘계학술발표대회
    • /
    • pp.39.2-39.2
    • /
    • 2011
  • With the steady increase in the demand for flexible devices, mainly in display panels, researchers have focused on finding a novel material that have excellent electrical properties even when it is bended or stretched, along with superior mechanical and thermal properties. Graphene, a single-layered two-dimensional carbon lattice, has recently attracted tremendous research interest in this respect. However, the limitations in the growing method of graphene, mainly chemical vapor deposition on transition metal catalysts, has posed severe problems in terms of device integration, due to the laborious transfer process that may damage and contaminate the graphene layer. In addition, to lower the overall cost, a fabrication technique that supports low temperature and low vacuum is required, which is the main reason why solution-based process for graphene layer deposition has become the hot issue. Nonetheless, a direct deposition method of large area, few-layered, and uniform graphene layers has not been reported yet, along with a convenient method of patterning them. Here, we report an evaporation-induced technique for directly depositing few layers of graphene nanosheets with excellent uniformity and thickness controllability on any substrate. The printed graphene nanosheets can be patterned into desired shapes and structures, which can be directly applicable as flexible and transparent electrode. To illustrate such potential, the transport properties and resistivity of the deposited graphene layers have been investigated according to their thickness. The induced internal flow of the graphene solution during tis evaporation allows uniform deposition with which its thickness, and thus resistivity can be tuned by controlling the composition ratio of the solute and solvent.

  • PDF

알루미나를 첨가한 코디어라이트계 결정화 유리의 소결거동 및 결정화 특성 (The Sintering Mechanism and Crystallization Characteristics of Alumina-filled Cordierite-type Glass-ceramics)

  • 박정현;노재호;성재석;구기덕
    • 한국세라믹학회지
    • /
    • 제35권7호
    • /
    • pp.706-714
    • /
    • 1998
  • The MgO-{{{{ { {Al }_{2 }O }_{3 } }}-{{{{ { {SiO }_{2 } }_{ } }}system containing alumina powder was fabricated sintered at various temperature and analyzed in order to study the sintering mechanism and crystallization characteristics. The specimen composed of glass powder with average particle size of 8.27 $\mu\textrm{m}$ and 0-40 vol% alumina powder were sint-ered for 3 hrs at the temperature between 850$^{\circ}C$ and 1350$^{\circ}C$ The sintering mechanism consists of the redis-tribution of particles occuring at 750$^{\circ}C$ and the viscous flow at 850∼950$^{\circ}C$. The degree of crystallization and sintering temperatue were dependent upon the ratio of glass/alumina. The second phase from the reaction between glass and alumina was not observed which was confirmed by XRD and properties analysis. The density dielectric constant and specific resistivity of specimen were 2.30∼3.26g/cm2 5.8∼7.38 at 1 GHz density dielectric constant and specific resistivity of specimen were 2.30∼3.26g/cm3 5.8∼7.38 at 1GHz and 1.23∼4.70${\times}$107 $\Omega$$.$m respectively.

  • PDF

Evaluation of three-dimensional cole-cole parameters from spectral IP data

  • Yang Jeong-Seok;Kim Hee Joon
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 한국지구물리탐사학회 2003년도 Proceedings of the international symposium on the fusion technology
    • /
    • pp.383-389
    • /
    • 2003
  • Clay minerals show a distinct induced-polarization phenomenon, which is one of the most important factors for predicting groundwater flow and contaminant transport. This paper presents a step-by-step process to estimate Cole-Cole parameters from spectral induced-polarization (IP) data measured on the surface of three-dimensional earth. First, the inversion of low-frequency resistivity survey data is made to identify the dc resistivity ${\rho}_dc$ of a volume having IP effects. The other parameters, chargeability m, time constant $\tau$, and frequency dependence c, are sought for the polarizable volume. Next, using multi-frequency data, c can be obtained as high or low asymptotes of the slope of log phase vs. log frequency. Further, for low m, intrinsic $\tau$ is approximated by apparent one, ${\tau}_a$, which is derived from the relation ${{\omega}{\tau}}_a$=1 at an angular frequency $\omega$, where the imaginary component of spectral IP data has an extreme value. Finally, to obtain intrinsic m a two-step linearized procedure has been derived. For a body of given $\tau$ and c, forward modeling with a progression of m values yields a plot of observed vs. intrinsic imaginary components for a frequency. Since this plot is essentially linear, to extract the intrinsic imaginary component is quite simple with an observed value. Using the plot of intrinsic imaginary component vs. m, intrinsic m is determined. We present a synthetic example to illustrate that the Cole-Cole parameters can be recovered from spectral IP data.

  • PDF

원격플라즈마화학증착에 의한 투명전도성 산화주석 박막 (The transparent and conducting tin oxide thin films by the remote plasma chemical vapor deposition)

  • 이흥수;윤천호;박정일;박광자
    • 한국진공학회지
    • /
    • 제7권1호
    • /
    • pp.43-50
    • /
    • 1998
  • 원격플라즈마화학증착(RPCVD)에 의하여 파이렉스 유리 기판 위에 투명전도성 산화 주석막을 제조하였다. RPCVD공정의 주요한 조절변수는 증착시간, 사메틸주석, 산소 및 아 르곤의 유속, 라디오 주파수 출력, 및 기판온도를 포함했다. 양질의 산화주석막을 제조하고 RPCVD공정을 보다 잘 이해하기 위하여 이들 파라미터에 대한 증착속도, 전기적 저항, 광 학적 투과도 및 결정구조의 의존성을 체계적으로 살펴보았다. 산화주석막의 성질에 미치는 이들 파라미터의 영향은 복잡하게 서로 연관되어 있다. 최적화된 증착조건에서 제조된 산화 주석막은 102$\AA$/min의 증착속도, $9.7\times 10^{-3}\Omega$cm의 비저항 및 ~80%의 가시선 투과도를 나 타냈다.

  • PDF