• 제목/요약/키워드: Flow Regime Analysis

검색결과 198건 처리시간 0.036초

Discharge Performance of Impinging Injector for Cavitating Flow

  • Cho, Won Kook;Ryu, Chul-Sung
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제5권1호
    • /
    • pp.1-5
    • /
    • 2004
  • The discharge performance of an impinging-type injector for cavitating flow has been evaluated. The predicted discharge coefficient for cavitating flow agree s well with the measured data showing less than 2% discrepancy. For the case of non- cavitating flow analysis, the disagreement between CFD resu lts and the experimental data is 8%. The discharge coefficient for the cavitating flow decreases with decrea se in the Reynolds number. On the other hand, it increases slightly as the Reynolds number increases for the non-cavitating flow because of the reduced viscous effect. The incipience of cavitation is predicted to occur around the cavitation number of 1.3 for fixed Reynolds number flow. In this environment, the discharge performance is proportional to the cavitation number for cavitating flow while it is independent to the cavitation number for non-cavitating flow regime.

원판형 드래그펌프의 배기특성에 관한 연구 (A Study on the Pumping Performance of a Disk-type Drag Pump)

  • 황영규;허중식;최욱진
    • 대한기계학회논문집B
    • /
    • 제24권6호
    • /
    • pp.860-869
    • /
    • 2000
  • Numerical and experimental investigations are performed for the molecular transition and slip flows in pumping channels of a disk-type drag pump. The flow occurring in the pumping channel develops from the molecular transition to the slip flow traveling downstream. Two different numerical methods are used in this analysis: the first one is a continuum approach in solving the Navier-Stokes equations with slip boundary conditions, and the second one is a stochastic approach through the use of the direct simulation Monte Carlo method. In the experimental study, the inlet pressures are measured for various outlet pressures in the range of 0.1{\sim}4Torr. From the present study, the numerical results of predicting the performance, obtained by both methods, agree well with the experimental data for the range of Knudsen number $Kn{\leq}0.1$ (i.e., the slip flow regime). But the results from the second method only agree with the experimental data for Kn>0.1(i.e., the molecular transition regime)

기-액 2상유동에 따른 원심펌프 성능변화에 대한 연구 (A Study on the Performance of a Centrifugal Pump with Two-Phase Flow)

  • 이종철;김윤제;김철수
    • 한국유체기계학회 논문집
    • /
    • 제3권3호
    • /
    • pp.12-18
    • /
    • 2000
  • In this study, experimental and numerical analyses are carried out to investigate the performance of centrifugal pump with various air admitting conditions. Experiments on the pump performance under air-water two-phase flow are accomplished using a centrifugal pump with semi-open type impeller having three, five and seven blades, respectively. Also, the numerical analysis of turbulent air-water two-phase flow using the finite volume method has been carried out to obtain the pressure, velocities and void fraction on the basis of a so-called bubbly flow model with the constant size and shape of cavity. The results obtained through this study show the reasonable agreements within the range of bubbly flow regime. There are promising developments concerning application of the present study for the flow in a centrifugal pump with two-phase flow conditions and efforts must be followed to improve the turbulence model and two-phase flow model for turbomachinery.

  • PDF

종횡비가 낮은 직각형 밀폐용기 내의 코어흐름 형태에 관한 해석 -( II ) 운동력이 양단에 존재하는 경우- (Scaling analysis of Core Flow Pattern in a Low-Aspect Ratio Rectangular Enclosure -( II ) End-Driven flow Regime-)

  • 이진호
    • 대한기계학회논문집
    • /
    • 제8권4호
    • /
    • pp.375-384
    • /
    • 1984
  • 본 연구에서는 종횡비가 낮은 직사각형 밀폐용기 내에 Rayleigh수가 충분히 커서 흐름의 운동력이 용기 양단에 존재하는 경우에 PartⅠ에서 개발된 해석적인 모델 을 근거한 scaling analysis를 통해 그 내부 흐름 형태를 정성적으로 예측, 기존의 결 과와 비교, 검토하였다. 해석결과, Prandtl수에 따라 여러가지 내부 흐름 형태가 존 재할 수 있음이 밝혀졌으며 용기 내 뚜렷한 경계층 흐름이 존재하기 위한 필요조건도 아울러 얻어졌다.

종횡비가 낮은 직각형 밀폐용기 내의 코어흐름 형대테 관한 해석 -( I ) 운동력의 코어에 존재하는 경우- (Scaling Analysis of Core Flow Pattern in a Low-Aspect Ratio Rectangular Enclosure -( I ) Core-Drive Flow Regime-)

  • 이진호
    • 대한기계학회논문집
    • /
    • 제8권3호
    • /
    • pp.274-287
    • /
    • 1984
  • 밀폐용기 내의 자연대류에 의한 흐름현상에 고유하며 아직까지 해결되지 않고 있는 중요한 문제 는 그 내부흐름의 형태를 주어진 물리적인 조건으로부터 미리 예측할 수 없다는 것이다. 이는 이 문제의 해석적인 해결에 가장 큰 난점이 되고 있다. 본 논문에서는 multiple scales method를 이 용한 해석적인 모델을 개발하여 종횡비가 낮은 직각형 밀폐용기 내에서 운동력이 코어에 존재하 는 경우 그 내부 흐름형태를 scaling analysis를 통해 정성적으로 예측, 기존의 결과와 비교 검토 하였다.

Using oscillatory shear to probe the effects of bidispersity in inverse ferrofluids

  • Ekwebelam, C.C.;See, H.
    • Korea-Australia Rheology Journal
    • /
    • 제19권1호
    • /
    • pp.35-42
    • /
    • 2007
  • The effects of particle size distribution on the magnetorheological response of inverse ferrofluids was investigated using controlled mixtures of two monodisperse non-magnetisable powders of sizes $4.6\;{\mu}m\;and\;80{\mu}m$ at constant volume fraction of 30%, subjected to large amplitude oscillatory shear flow. In the linear viscoelastic regime (pre-yield region), it was found that the storage and loss moduli were dependent on the particle size as well as the proportion of small particles, with the highest storage modulus occurring for the monodisperse small particles. In the nonlinear regime (post yield region), Fourier analysis was used to compare the behaviour of the $1^{st}\;and\;3^{rd}$ harmonics ($I_{1}\;and\;I_{3}\;respectively$) as well as the fundamental phase angle as functions of the applied strain amplitude. The ratio of $I_{3}/I_{1}$ was found to become more pronounced with decreasing particle size as well as with increasing proportion of small particles in the bidisperse mixtures. Furthermore, the phase angle was able to clearly show the transition from solid-like to viscous behaviour. The results suggested that the nonlinear response of a bidisperse IFF is dependent on particle size as well as the proportion of small particles in the system.

섭동법을 이용한 만곡 리뷸릿에 관한 이론적 연구 (Perturbation Analysis of a Meandering Rivulet)

  • 김진호;김호영;강병하;이재헌
    • 설비공학논문집
    • /
    • 제13권12호
    • /
    • pp.1196-1204
    • /
    • 2001
  • The rivulet is a narrow stream of liquid flowing down a solid surface. When the rivulet\`s flow rate exceeds a certain limit, it tends to meander exhibiting the instability of its interface. This analysis performs a perturbation analysis of this meandering rivulet assuming an inviscid flow possessing contact angle hysteresis at the contact line. The analysis reveals that the contact angle hysteresis as well as the velocity difference across the inter-face, strongly induces the instability of the liquid interface. Moreover, when the rivulet veto-city is low, it is predicted that the axisymmetric disturbance amplifies more rapidly than the anti-axisymmetric disturbance, which explains the emergence of the droplet flow at the low velocity regime.

  • PDF

FDDO를 이용한 실린더를 지나는 희박기체의 해석 (A Numerical Analysis of Rarefied Flow of Cylinder Using FDDO)

  • 안무영;장근식
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 1998년도 춘계 학술대회논문집
    • /
    • pp.138-144
    • /
    • 1998
  • The BGK equation, which is the kinetic model equation of Boltzmann equation, is solved using FDDO(finite difference with the discrete-ordinate method) to compute the rarefied flow of monatomic gas. Using reduced velocity distribution and discrete ordinate method, the scalar equation is transformed into a system of hyperbolic equations. High resolution ENO(Essentially Non-Oscillatory) scheme based on Harten-Yee's MFA(Modified Flux Approach) method with Strang-type explicit time integration is applied to solve the system equations. The calculated results are well compared with the experimental density field of NACA0012 airfoil, validating the developed computer code. Next. the computed results of circular cylinder flow for various Knudsen numbers are compared with the DSMC(Direct Simulation Monte Carlo) results by Vogenitz et al. The present scheme is found to be useful and efficient far the analysis of two-dimensional rarefied gas flows, especially in the transitional flow regime, when compared with the DSMC method.

  • PDF

주기적으로 회전진동하는 원주 후류의 유동구조에 관한 실험적 연구 (Experimental Study on Flow Structure of Wake Behind a Rotationally Oscillating Circular Cylinder)

  • 이정엽;이상준
    • 대한기계학회논문집B
    • /
    • 제30권4호
    • /
    • pp.298-305
    • /
    • 2006
  • The flow around a circular cylinder which oscillates rotationally with a relatively high forcing frequency has been investigated experimentally using flow visualization and hot-wire measurements. Dominant parameters are Reynolds number (Re), oscillation amplitude $({\theta}_A)$, and frequency ratio $F_R=f_f/f_n$, where $f_f$ is the forcing frequency and $f_n$ is the natural frequency of vortex shedding. Experiments were carried out under the conditions of $Re=4.14{\times}10^3,\;{\theta}_A={\pi}/6$, and $0{\leq}F_R{\leq}2$. The effect of frequency ratio $F_R$ on the flow structure of wake was evaluated by measuring wake velocity profile and spectral analysis of hot-wire signal. Depending on the frequency ratio $F_R$, the cylinder wake has 5 different flow regimes. The vortex formation length and vortex shedding frequency are changed significantly before and after the lock-on regime. The drag coefficient was reduced under the condition of $F_R<1.0$ and the maximum drag reduction is about 33% at $F_R=0.8$. However, the drag is increased as $F_R$ increases beyond $F_R=1.0$. This active flow control method can be effective in aerodynamic applications, if the forcing parameters are selected optimally.

사립조도와 하상형상조도를 고려한 내성천 하류의 흐름저항 분석 (Flow Resistance Analysis for Lower Naesung Stream Considering Grain and Bedform Roughness)

  • 지운;김지성;이찬주
    • 한국수자원학회논문집
    • /
    • 제46권12호
    • /
    • pp.1209-1220
    • /
    • 2013
  • 본 연구에서는 내성천 하류 구간을 대상으로 검보정된 1차원 수치모형을 이용하여 흐름모의를 수행함으로써 추정된 구간 조도계수에 대해 분석하였다. 또한 실측 및 모의된 수리조건을 이용하여 향석 지점에서의 하상형태 예측을 수행하였으며 사립조도에 의한 흐름저항 계수 값을 고려하여 총 흐름저항 조도계수를 산정하였다. 수치모의에 의해 추정된 구간 조도계수와 사립조도 및 하상형태에 의한 흐름저항 계수를 추정한 결과 값을 상호 비교 분석하였으며 그 결과, 저수류 영역 흐름에서는 사립조도 및 하상형태에 의한 흐름저항 외에 식생, 만곡도, 사주 등의 기타 요인들에 의한 영향이 크게 반영되어 수치모의 상의 조도계수 값이 사립조도 및 하상형태에 의해 추정 가능한 조도계수 범위보다 크게 산정되는 것으로 나타났다. 그러나 $500m^3/s$ 이상의 천이구간 및 고수류 영역에서는 사립조도 및 하상형태 예측에 의한 조도계수 범위에 수치모의에 의해 검증된 Manning 조도계수가 포함되는 것으로 나타났다.