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_because of the inherent coupling and nonlinearity of

1. Introduction

1.1. General Aspect of the Problem

Natural convection in completely confined fluids
occurs in many and diverse applications such as
nuclear reactor systems, material processing, solar
energy and environmental engineering and geo-
physics, and has, as a result, been receiving more
attention recently. The study of natural convection
flows that are completely bounded by surfaces leads
to a number of ;iiffcult problems. Natural convection
is extremely sensitive to the configuration and

boundary conditions. Theoretical analysis is limited
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the basic equations,
Most of the earlier works were concerned with

natural convection in horizontal cylinders and high

aspect ratio rectangles. A comprehensive review of
earlier existing works has been done by Ostrach‘®,
More recent research on natural convection flows in
horizontal, vertical and tilted rectangular enclosures
was reviewed by Catton‘®. Despite an ever increa-
sing amount of research on confined natural convec-
tion, a problem inherent to all situations of this type
that remains unsolved is that the core flow patterns
cannot be predicted a priori from the given geometry
and boundary conditions. As is pointed out in(1), in
the confined natural convection problems in horizontal
cylinders and high aspect ratio rectangles, two core

configurations are mathematically possible, viz.,
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rotating and isothermal or stagnant and stratified.
Analytical and numerical solutions first indicated
the former and it was only after experiments indi-
cated that the latter always occurred and thereafter
such results were obtained theoretically. Similarly
in the low aspect ratio rectangular enclosures,
analysis® showed that the core flow structure is
always parallel when aspect ratio, A, goes to very
small value with arbitrary but fixed value of Gr,
Grashof nuwber based on cavity height, and it was
indicated by experiments~? and numerical works®~
1 that the flow pattern in the core is not always
parallel. Under certain conditions, there appeared
other types of core configurations such as secondary
cells or stagnant flows in the core. Such ambiguities
concerning the nature of the flows are inherent in
all internal convection problems as has been shown
above and no reliable analytical method, as yet,
exists to predict, a priori, the core flow pattern. A
primary motivation of the present work is to develop
some means to predict the core flow pattern, a
;riori, in jow aspect” rafio rectangular enclosures.
Empbhasis is given to “heated-from-the side” configura
tions, because such configurations contain all the
essential physics that are common to all confined

natural convection flows.

1.2. Method of Approach

In a low aspect retio ractangular enclosure, the
flow region can, on a geometric basis, be divided
into two regions. One, the region near end walls
which we will call herein “end region” and the other,
“core region”, the region outside the end regions
with horizontal boundaries(Fig. 1). For a given
fluid and geometry, when the Rayleigh number(i.e.,
the temperature difference between the end walls)
is small, temperature gradient will be felt across the
entire configuration and thus the heat transfer
between the end walls will be mainly by conduction
in the core. In this situation, the primary driving
force for the fluid motion will be the buoyancy force
in the core, This flow regime will be called herein
the “core-driven flow regime”. On the other hand,
when the Rayleigh number is sufficiently high the
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transfer of heat by conduction in the core will be
negligible. Most of the temperature drop(or increase)
in this situation will occur in the end regions and
will be convected across the cavity to opposite end.
There thus will no longer exist the driving force in
the core, and instead, it will come from the end
regions. This flow regime will be called the “end-
driven flow regime”. In between the two flow regime,
it will be called the “intermediate flow regime”.

In order to be able to predict the core flow pattern,
and thus, the whole flow pattern correctly, one has
to be clear on what physical mechanisms govern the
flow. To do this, one has to develop a mathematical
model which properly represents the phyics of the
core flow. Since the flow characteristics may be
different and coupled in each flow region, it may
not be possible to consider all the important physical
mechanisms in the enclosure by basic equations for
either region. In addition, the equations that describe
the phenomena of interest herein are nonlinear and
bidirectionally coupled.

In order to ensure that an assumption made in
one equation is consistently transmitted to the other
equations, a formal procedure is employed herein
based on the method of multiple scales, see Nayfeh@®,
Multiple scales are introduced to give mathematical
degrees of freedom which enable physical statements
(force or energy balance) to be properly made on
the important physical mechanisms in the enclosure.

Based on a scaling analysis which gives degrees
of freedom, proper physical balances in the basic
dimensionless equations can be made and the order
of magnitude of each physical terms can be estimated
with the relevant dimensionless parameter as its
coefficient. Then, by considering the derivatives with
respect to the core flow region, the equations which
will describe the core flow characteristics can be
extracted from the basic dimensionless equations,
The core flow patterns are then studied in a global
sense under the implicit assumption that there exists
no flow subregimes such as secondary cells. On that
basis, the geometric length scales are the proper ones
for the core flow structure. In the present paper,

consideration is given to the core-driven flow regime
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Fig. 1 Schematic diagram of the system

and leave the end-driven flow regime to the part]

of the companion paper.

2. Formulation of the Problem

The flow field to be studied herein is assumed
steady, two-dimensional, laminar and quasi-incom-

pressible. Quasi-incompressibility is generally re-
ferred to as Boussinesq approximation and has been

discussed in a formal way by Ostrach®®.

2.1. Normalization of the Basic Equations
The basic equations of vorticity and energy tran-

sport for two-dimensional flow can be written as
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Also g is the acceleration due to gravity and v, 8
and «, the kinematic viscosity, coefficient of thermal
expansion and thermal diffusivity, The viscous
dissipation was neglected in the energy equation (3)
due mainly to the very low velocities present in
natural convection flows of the type considered
herein. The variations of the dynamic viscosity g
and thermal conductivity £ were also neglected as
a result of the quasi-incompressibility of the fluid.

The basic equations (1)~(8) are normalized by

the following definitions.

x:‘L'y y=ﬁ7 (/) U (4)
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In (4), the characteristic stream function ¥ is to

=

be specified later in the analysis in accordance with
the physical situations of the problem. The charac-
teristic vorticity Q is represented as ¥z/l%, where
!l is a length scale that will also be specified in the
course of analysis. The purpose of introducing the
unspecified length scale [ (instead of using the
specific geometry length scale) is to normalize the
vorticity properly according to the physics of the
system.

Substitution of the definition(4) into Egs. (1)~(3)
yields
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where AT=Ty—T: and A represents the aspect

ratio, %

Referring to Fig. 1, the corresponding boundary

conditions become

0

g[:—af—OﬁlOatxOl (8a)
a
¢ =0, 00 =0 at y=0, 1 (8b)

oy
And by the centro-symmetry property of the equa-
tions and boundary conditions®,
$(x%, )=¢(1—%, 1-3)
0Cx, ) =1—01—=x, 1—¥)

(92)
(9b)

2.2. Working Form of the Equations

In the dimensionless equations (5)~(7), when A?
&1 the x-direction ditfusions terms can be neglected
compared to the y-direction diffusion terms. Since
the x-direction diffusion terms are the highest order
x-derivatives, if they are neglected, the end wall
boundary conditions can not be fully satisfied.
Therefore, the equations without the horizontal
diffusion terms in Egs. (5)~(7) are only valid away
from the ends, i.e., in the core. Instead, the equations

which represent the flow characteristics in the end
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regions could be obtained by properly stretching the
x-coordinate in Egs. (5)~(7).

In order to obtain insights into the nature of flow
charactics, the unspecified characteristic quantities
such as & and ! in Egs. (5)~(7) should be
determined first to see what the relevant dimensionless
parameters are. These quantities may, in principle,
be determined by considering the flow mechanisms
in either region. However, as the two regions are
closely coupled and this coupling affects much of
the flow structure, it is necessary that in determi-
ning the characteristic quantities both flow regions
and their coupling be considered in some way.
Otherwise, important physical mechanisms may be
overlooked. A mathematically formal procedure is,
therefore, employed on the basis of the method of
multiple scales through which both the end core flow
regions together with the interacting region are
explicitly identified in the basic dimensionless
equations.

Here the physical domain of interest is confined
and finite and the singular behaviour of the
dimensionless equations are expected near the end
walls. Thus the multiple scales are introduced in
the following way (see, 12).

x

C=x, 7=—— am
The derivatives are
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where the derivatives with resdect to { and p

represent the core and end region characteristics,
respectively, and e. is a small, stretching parameter
defined as

ax
Ex= _L—‘ (12)

where . is the end region characteristic length scale.
Introducing the derivatives of the multiple scales

(12) into the dimensionless equations (5)~(7), we
then obtain
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These are the working form of the basic dimensionless
equations.

In the following analysis, the dimensionless groups
are to be determined by proper physical balances in
Egs. (13)~(15). Then the core flow characteristics
are going to be studied from a global view by noting
then
observing their effects on the equations as they are

the character of the dimensionless groups,

allowed to take on limiting values.

3. Global Core Configuration

The driving force of the fluid motion in the
core-driven flow regime is the buoyancy force
induced primarily by the temperature gradient in
the core. We thus study the core configuration first

considering the balance bethHe"‘ﬁifdﬁahEy and

‘viscous forces implying that the viscous effect is

dominant in the core compared to ffyainertia effect,
and then that between the buoyancy and inertia
forces which implies that the inertia effect is
dominant in the core. The explicit conditions for each

situation will be delineated in the course of analysis.

3.1. Viscous-Effect Dominated Core

(A) Core Flow Equation

From Eq(13), the balance between buoyancy and
viscous forces in the core can be represented as

ATIPH L
IBg U a2 ~ gfyR H (16)

Considering that the buoyancy force in the core

drives the core flow and that there is not supposed
to exist any particular region in the core flow, it is
appropriate to represent the characteristic vorticity

Qr by specifying the characteristic length [ by H, as
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From (16) and (17), we obtain an
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One more balance 1s required to determine the
stretching parameter &., from which the end region
flow equations and its“characteristic length scale can
be determined. However, at this moment, that is not
clear before we know the physics of core flow.
Thus,
section.
“Sibstituting (18) into Egs. (13)~(15) and conside-
ring the terms with { and y derivatives, the equations
which will describe the core flow characteristics

we leave the determination of e. to later

can be written as

, 0(w, ¢) a(w ¢ ,00w | Pw w
o'y '
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For the situation described above, it is now evident
that our analysis is valid under the condition Gr
A?<1. Beyond this condition, ie., for GrA*»1,
1§g;uaﬁffect becomes dommant in the core, and thus,
different scalings are requlred based on different force
balances for the analysis of that situation.

(B) Core Flow Characteristics

(1) GrA*<1, A*1
Since Pr appears as a parameter in Eq. (21), its
effect must be analyzed.

(i) Pr<1—RaA*K1

When Pr<1 such that RaA’«l, Eq. (21) may
reduce to ’
220
0= oyt (22)

Considering the adiabatic horizontal boundary condi-
tions (8b). the heat flow is one-dimensional in a pur-
ely conductive regime. @ thus can be represented as
=00 =K.{+K, (23)
where K, K, are arbitrary constants to be determined
from the matching with the end region solutions.
From Egs. (19), (20) and (23) with the correspon-
ding boundary conditions in(8), we can obtain
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g= ;i‘y (y=D? (24)

which represents the parallel core flow pattern.
(i) Pry1—RaA’~1
When Pr is large such that RaA?~1, Eq. (21) may

reduce to

206, 9) 0 _
3T, 3 - 0 25

Rewriting Eq. (25) and integrating with respect to

y from y=0 to 1, we have

[l (o5e )t S (050 S ) J=c 26>

By changing the order of integration and diffrentia-
tion and applying the Leibnitz’s rule, Eq. (26) can

be rewritten as

2 1, ¢ 0 og
LN L AN N d
o o5 =510 * 5 25 @n
Integrating the left hand side by parts and applying

the boundary conditions(8), we finally have

o (t o8
Ysoﬁb_ay_dy:" (28)

It can be shown (see, 15) that the only possible

core configuration which can satisfy the Eq. (28) is

LK Le( (29)

and '
@Z K /(5) (29b)

where K is an arbitrary constant and g(y), A(¥)
are an arbitary function of y. Eq. (29) represents
that the temperature distribution in the core is linear _
and stratified Whlle the correspondmg core flow
pattern is parallel '

From Eqs (19) (20) and (29) with the correspon-

ding boundary conditions of (8), A(y) can te
represented as
1
K= (30)

(2) Gr A*~1,A* K1
() Pr<1-RaA*<K1
When Pr is very small such that RaA? L1, Eq.
(21) reduces to the same form as Eq. (22) which was
previously treated. Referring the result of (23), @
can be represented as
0=K1C+Kz (31)
Under the present condition the flow characteristics
from Eq. (19) is not readily perceivable due to its
nonlinearity. We thus try to get information from
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an integral from of Eq. (19) as we did with Eq.
(25) in the preceding analysis.

If we rewrite and integrate Eq. (19) over y from
0 to 1, for GrA*~]1 we have

acS“’ oy Doy S( “’%ﬁb‘ gf Jay
=S:-g'g—dy (32

Substituting the vorticity equation (20) and the
linear temperature profile (31) into Eq. (32), and

applying the proper boundary conditions, we then
have

) aa¢, as¢ 1

a:S 9) ay dy aya 0—K1 (33)
Considering the boundary condition, ¢ can be

represented as

&, =gy (39
where f(), g(») is an arbitrary function of { and
¥, respectively. Substituting(34) into Eq. (33) and
carrying out the differentiation, we find

2/OF O 2(0g" (Ndy+AD L N1
=K1 (35>
From the symmetry property of ¢ in(9), the
function g(y) is an even function about the point
y=1/2. Then the product g(y) g''(¥) is an odd
function about y=1/2, and the integral S:g(y)g"'

(»)dy becomes zero. Eq. (35) thus reduces to
AL N=K, (367

This gives
K

J’(C)———mzcomt.:lf4 €7
Then from Egs. (34) and (37).
¢=Kig(») (38)

which shows the parallel core flow structure.
From Eqgs. (19), (20) and (38) with the proper
boundary conditions, g(¥) can be given as

gN="-—tyr-1y 29

(ii) Pr~1—Ra A*~]

When Pr is cf order 1 such that Re A*~1, Eq.
(21) reduces to the same from as Eq(25). By the
similar procedure as in the preceding analysis, ¢
and ¢ can be represented as

¢=¢(» (40)

and
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6= +g(» “n
Substituting Eqgs. (40), (41) and (20) into Eq. (19)
and for GrA2~1] applying the proper boundary con-
ditions, € and ¢ canbe given as

I=K{+g(y) (42)
and

y(y—1)? (43)
Eqs. (42) and
(43) show that the core flow pattern is still parallel
while the core temperature distribution is linear and

— K5
="

where K is an arbitrary constant.

stratified,

Gii) Pr1— RaA®*> 1

When Pr is large such that RaA?>> 1, from Eq.
(21) the heat transfer by conduction is negligible
and convection becomes dominant in the core. There
thus no longer exists the driving force in the core.
Instead the driving force will come out from the end
region. This corresponds to the end-driven flow
regime and will be considered in Part II, the com-
panion paper.

(3) GrAz> 1, A K1

Under this condition, from Eq. (19) inertia becomes
dominant in the core. Thus the force balance balance
made on the basis of viscous-effect dominated core
becomes inappropriate. This situation will be treated
in the case of inertia-effect dominated core.

(c) Determination of Stretching Parameter, e.

In the preceding analysis, it was shown that in
the viscous-effect dominated core the temperature
distribution in the core is either linear or linear and
stratified and the core flow structure is parallel. In
such a flow regime, the end regions are supposed to
have little effect on the core flow except that they
simply turn the core flow to conserve the mass. Then
the proper physical balance in the end region that is
needed to determine e. could be that between the
viscous diffusion along the end walls and that along
the horizontal boundaries in the end region. From

Eq. (13), this balance can be represented as

A2
et ~1 (44)
and thus e.~A (45)

From (12) and (45), the end region characteristic
length, d., is given as
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Or=6.rL~vH (46)
It is thus seen from (46) that the end regions
penetrate a distance of order H into the core. In
other words, the core configurtions obtained above
are thought to be valid outside a distance of order
H from the either end.

The predicted core configurations in the above
analysis show excellent agreement with those of
Cormack et. al's asymptotic theory® except the
validity criterion. While the present analysis simply
gives RaA?<] for its validity, Cormack et. al's
approximate criterion is Ra?A®<10°. In addition,
the present analysis gives the proper physical
meaning of the characteristic stream function and
the end region characteristic length scale which were
used in cormack et. al’s work without any justifica-
tion. It is very important to know accurately the
physical meaning of the characteristic quantities
defined in the analysis, because in many cases they
give the proper physical conditions within which the

analysis is valid.

3.2. Inertia-Effect Dgninated Core

(A) Core Flow Equations

It was shown in the previous analysis that the
balance between the buoyancy and viscous forces
made therein becomes inappropriate when GrA*>1,
because the ineria effect becomes dominant under
that condition. We now study the flow characteristics
of this situation considering the balance between the
buoyancy and inertia forces in the core.

From Eq. (13), the balance between the buoyancy

and inertia forces in the core can be represented as

ATIFH
EW‘"NI “n

Specifying [ as H by the same reasoning in (17),
¥’ becomes

Ua~(BgdTHHY? (48)
Here we also leave the determination of the stretching
parameter &. to later. Substituting (48) into Eqgs.
(13)-(15) and considering the terms with ¢ and »

derivatives, the core flow equationscan be written as

ow, 9 _ 29 1 (0w & w
= Ve (A ) o

”’:‘<Az‘_aacf +'Lay? ) (50)
26,6 1 00 20
AT,y ~APrGIA (a5 + ayz) G

For GrA?> 1, Pr appears as a parameter in Eq.
(51). Because consideration is being given to the
situation in which the driving force exists in the
core, the analysis will be valid within the parametric
range of Pr? GrA*<] which is possible only for Pr?
gﬁ, i.e., for low Pr. One thing to be noted
is that for GrA*>1, viscous diffusion terms seem to
be neglible compared to the other terms in Eq. (49).
However, since these terms are the derivatives of
the highest order in the equations Eq. (49) becomes
singular for Gr AZ> 1 which implies that for negligible
horizontal diffusion term, Az—a;c—zu—, in the core for
A2«1, there exists a thin viscous layer very near
boundaries in which the vertical

2
diffusion term, NF TR is important.

the horizontal

(B) Core Flow Characteristics

1
D Pr* ;a7 A1
When Pr? is very small such that Pr®GrA%<K1,

fron Eq. (51) the heat transfer in the core is purely
diffusive and, as treated before, 6 can be given as

0=K,(+K, 62
Then, from Egs. (49) and(52), for GrA¥>»1

a(w, ¢) _

2@y 9

This equation is very difficult to treat analytically.
However, in order that Eq. (53) be valid, ¢ should
at least be a function of both variables as

o=¢& » (54)
This the core flow pattern(to be

accurate, the flow pattern outside the thin viscous

implies that

layer near the horisontal boundaries in the core)
becomes non-parallel when the inertia is important
in the core, although the flow is driven by the
buoyancy force in the core. This is in contradistin-
ction to the result of Cormack et. al's asymptotic
result of parallel flow Existing numerical wo-
rksi%1 do not report any non-parallel core flow
structure within the present parametric range. No

experimental data are available,as yet, for direct
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comparision for the present configuration. This
discrepancy thusneeds urgent verification.

(2) Pr:GrA*~], A1

Under this condition, Eq. (61) reduces to the same
form as Eq. (25) which was treated before. Following
the same procedure, we have the identical intergal
form, Eq. (28). For the present case, however, no
situation could be found in which the driving force
could occur in the core(see, 15). Thus the balance
based on the driving force in the core is inappro-
priate and the analysis based on this balance is
valid only for Pr2GrA*L1. Actually for GrA%»1,
the condition Pr? Gri~] is possible only when RaA?
>»1 for low Pr in which case the driving force
exists in the end region as mentioned earlier. The
condition Pr?GrAZ>1 also corresponds to the case
RaA%»1 which will be considered in Part II.

(c) Determination of Stretching Parameter

In the above, although the core flow is driven by
the buoyancy force in the core, the core flow pattern
was shown to be non-parallel. In this situation, the
proper force balance for the end region, from which
the stretching parameter, ¢., is determined, is not

readily apparent. However, considering the relative

dominance of inertia with respect to viscous friction

in the core and the consequent non-parallel core
flow structure, it can be inferred that the inretia
in the end region can be as influential on the core
flow structure as the inertia in the core. Based on
this inferrence, the balance between the inertia in
the end and the inertia in the core seems to be
appropriate to the present situation. From Eq. (13),

this balance can be represented as

1
a1 (55)
and thus
| (56)

From (12) and(56), d. becomes of order
Ox=¢es-L~L (B7)

This tells us that there is no difference in horizon-
tal length scale hetween the core and end region,
which means that no clear distinction could be made
between the two regions. In addition, since e.~1,

there is no distinction between the equations with
the variables(y, ) and (¢, »), i.e., in the end and
core regions. The core flow picture in this situation
will thus be wvalid throughout the whole cavity
except the thin layer adjacent to the horizontal
boundaries which is supposed to exist due to the
singular behaviour of the viscous diffusion terms for
GrA%>1 in Eq. (49). Consequently the turning flow
in the cavity is not necessarily confined to the region
near the end walls in this case as in the case of
parallel core flow. Instead it may spread over the

entire configuration.
4. Summary and Concluding Remarks

Consideration has been given to the prediction of
global core flow pattern through scaling analysis in
the ccre-driven flow regime in a low aspect ratio
rectangular enciosure.

In the case of viscous-effect dominated core, the
balance was made between the buoyancy and viscous
forces in.the core. The analysis based on this kalance
is valid within the parametric range of GrA2?<{1 and
RaA*<1. In this case, the core flow structure is
parallel and the core temperature distribution is
either purely linear or linear and stratified. Such
core configuration was shown to be valid outside a
distance of order H from either end.

In the inertia-effect dominated core, the analysis
is based on the balance between the buoyancy and
inertia forces in the core. The wvalidity of analysis
is limited to the parametric ranges of G,A*>1 but
Pr*GrA?«1, which is only possible for low Pr.
The core flow pattern was shown to be non-parallel
although the core temperature profile is strictly
linear. No clear distinction in the flow characteristics
is thought to exist between the end and core region
in this case.

By comparison, the prediction of core configuration
is satisfactory. in the case of viscous-effect dominated
core. For the inertia-effect dominated core, experiment
is urgently needed to clarify the inconsistency
between the present prediction and others’ results.
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