• Title/Summary/Keyword: Flow Properties

Search Result 3,786, Processing Time 0.025 seconds

COMPLEXITY OF CONTINUOUS SEMI-FLOWS AND RELATED DYNAMICAL PROPERTIES

  • Zhang, Feng;He, Lian-Fa;Lu, Qi-Shao
    • Journal of the Korean Mathematical Society
    • /
    • v.46 no.2
    • /
    • pp.225-236
    • /
    • 2009
  • The equicontinuity and scattering properties of continuous semi-flows are studied on a compact metric space. The main results are obtained as follows: first, the complexity function defined by the spanning set is bounded if and only if the system is equicontinuous; secondly, if a continuous semi-flow is topologically weak mixing, then it is pointwise scattering; thirdly, several equivalent conditions for the time-one map of a continuous semi-flow to be scattering are presented; Finally, for a minimal continuous map it is shown that the "non-dense" requirement is unnecessary in the definition of scattering by using open covers.

Performance Investigation of a Continuously Variable ER Damper for Passenger Vehicles (승용차용 연속가변 ER댐퍼의 성능연구)

  • Kim, K.S.;Chang, E.;Choi, S.B.;Cheong, C.C.;Suh, M.S.;Yeo, M.S.
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.3 no.6
    • /
    • pp.69-77
    • /
    • 1995
  • This paper presents performance investigation of a continuously variable ER(Electro-Rheological) damper for passenger vehicles. A dynamic model of the damper is formulated by incorporating electric field-dependent Bingham properties of the ER fluid. The Bingham properties are experimentally obtained through Couette type electroviscous measurement with respect to two different particle concentrations. The governing equation of the hydraulic model treating three components of fluid resistances;electrode duct flow, check valve flow and piston gap flow, is achieved via the bond graph method. A prototype ER damper is then designed and manufactured on the basis of parameter analysis. The damping forces of the system are experimentally evaluated by changing the intensity of the electric field, the particle concentration and the electrode gap.

  • PDF

Smart body armor inspired by flow in bone

  • Tate, Melissa Louise Knothe
    • Smart Structures and Systems
    • /
    • v.7 no.3
    • /
    • pp.223-228
    • /
    • 2011
  • An understanding of biomaterials' smart properties and how biocomposite materials are manufactured by cells provides not only bio-inspiration for new classes of smart actuators and sensors but also foundational technology for smart materials and their manufacture. In this case study, I examine the unique smart properties of bone, which are evident at multiple length scales and how they provide inspiration for novel classes of mechanoactive materials. I then review potential approaches to engineer and manufacture bioinspired smart materials that can be applied to solve currently intractable problems such as the need for "smart" body armor or decor cum personal safety devices.

Evaluation of Flow Stress using Geometric Conditions of Ball Indentation Tests (볼 압입 시험의 기하학적 조건과 유동 응력 곡선의 관계에 관한 연구)

  • 이병섭;이호진;이봉상
    • Transactions of Materials Processing
    • /
    • v.12 no.4
    • /
    • pp.328-333
    • /
    • 2003
  • Ball indentation tests have been used to estimate the mechanical properties of materials by several investigators. In this study, load-depth curves from ball indentation tests were analyzed using the geometric conditions of the contact between ball and specimen. A series of numerical calculations and experimental results showed that the contact load-depth curves could be simplified by linear functions. Once we obtained the contact indentation depth from linearizing the experimental indentation curves, the estimation process of the flow properties became straight-forward and the scatter of results could be drastically reduced.

Measurement of Mechanical Properties for Hot Press Forming (열간프레스성형에서의 기계적 물성 측정)

  • Ahn, Kang-Hwan;Yoo, Dong-Hoon;Seok, Dong-Yoon;Kim, Hong-Gee;Park, Sung-Ho;Chung, Kwan-Soo
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2009.05a
    • /
    • pp.450-453
    • /
    • 2009
  • In order to overcome drawbacks of the advanced high strength steel such as inferior formability and large springback, the hot press forming process(HPF) has been being applied for forming of automotive sheet parts. Good formability and dimensional accuracy without springback as well as good crash performance of final products are the advantages of the HPF process. In this work, a method to characterize the mechanical properties of the HPF steel was developed based on the simple tension test at high temperatures and its finite element analysis, while it was applied to obtain strain rate and temperature dependent flow curves of the HPF steel. The final flow curves were represented by utilizing the Johnson-Cook type equation both in uniform and post-uniform deformation regions.

  • PDF

The Computer Simulation of Ink Penetration in the Gravure (그라비어에서 잉크 침투의 컴퓨터 시뮬레이션)

  • Youn, Jong-Tae
    • Journal of the Korean Graphic Arts Communication Society
    • /
    • v.28 no.2
    • /
    • pp.45-56
    • /
    • 2010
  • The computer simulation is presented of gravure ink transferring behavior and penetration to the paper when an gravure roller is used to transfer a printing ink onto a substrate. The three dimensional unsteady ink motion is simulated by Polyflow package software and experimented by IGT gravure printing test machine. The simulation is performed where the flow domain is bounded above by a stress free surface and bounded below by a moving substrate. Specific predictions are made for particular pattern of cells and substrates. Cell size and ink rheological properties are found to be the principal determination of transferring behavior. Simulation is currently restricted to the flow domain beneath the receding meniscus. Both Newtonian and shear thinning inks are considered.

Synthesis of N-doped Ethylcyclohexane Plasma Polymer Thin Films with Controlled Ammonia Flow Rate by PECVD Method

  • Seo, Hyunjin;Cho, Sang-Jin;Boo, Jin-Hyo
    • Applied Science and Convergence Technology
    • /
    • v.23 no.1
    • /
    • pp.44-47
    • /
    • 2014
  • In this study, we investigated the basic properties of N-doped ethylcyclohexene plasma polymer thin films that deposited by radio frequency (13.56 MHz) plasma-enhanced chemical vapor deposition (PECVD) method with controlled ammonia flow rate. Ethylcyclohexene was used as organic precursor with hydrogen gas as the precursor bubbler gas. Additionally, ammonia ($NH_3$) gas was used as nitrogen dopant. The as-grown polymerized thin films were analyzed using ellipsometry, Fourier-transform infrared [FT-IR] spectroscopy, UV-Visible spectroscopy, and water contact angle measurement. We found that with increasing plasma power, film thickness is gradually increased while optical transmittance is drastically decreased. However, under the same plasma condition, water contact angle is decreased with increasing $NH_3$ flow rate. The FT-IR spectra showed that the N-doped ethylcyclohexene plasma polymer films were completely fragmented and polymerized from ethylcyclohexane.

Preparation of Granule Powders for Thermal Spray Coating by Utilization of Pyrophyllite Minerals

  • Kim, Yong-Hyeon;Shin, Pyung-Woo;Lee, Sang-Jin
    • Journal of the Korean Ceramic Society
    • /
    • v.53 no.5
    • /
    • pp.557-562
    • /
    • 2016
  • Pyrophyllite granule powders for thermal spray coating were successfully prepared through spray drying process. To produce a stable slurry, commercial pyrophyllite powder of $45{\mu}m$ in size was ball-milled for reduction of the size to $2{\sim}3{\mu}m$ and a dispersant was added to control the viscosity. Dense and spherical granules (average granule size : $59{\mu}m$) were prepared under conditions of 12,500 rpm for rotation velocity of the atomizer and 100 cps for slurry viscosity. The granules were then heat treated at $1,200^{\circ}C$ for proper handling strength and flow properties. The final granules had an apparent density of $0.725g/cm^3$ and a flow rate of 2.5 g/sec, which represent excellent properties to be used as the granule powder for thermal spray coatings.

Linear Stability Analysis of the Reacting Shear Flow

  • Na Yang;Lee Seung-Bae;Shin Dong-Shin
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.8
    • /
    • pp.1309-1320
    • /
    • 2006
  • The linear instability of reacting shear flow is analyzed with special emphasis on the effects of the heat release and variable transport properties. Both analytic profiles and laminar solutions of the boundary-layer equations are used as base flows. The growth rates of the instabilities are sensitive to the laminar profiles, differing by more than a factor of 2 according to which profile is used. Thus, it is important to base the analysis on accurate laminar profiles. Accounting for variable transport properties also changes the mean profiles considerably, and so including them in the computation of the laminar profiles is equally important. At larger heat release, two modes that are stronger in the outer part of the shear layer have the highest growth rates; they also have shorter wavelengths than the center mode.

Insulation Properties and Microstructure of SiO$_2$ Film Prepared by rf Magnetron Sputtering (고주파 마그네트론 스퍼터링으로 제조한 SiO$_2$ 절연박막의 구조분석 및 절연저항에 관한 연구)

  • 박태순;이성래
    • Journal of the Korean institute of surface engineering
    • /
    • v.35 no.2
    • /
    • pp.113-121
    • /
    • 2002
  • We have investigated insulating properties of $SiO_2$ interlayer for the thin film strain gauge, which were prepared by RF magnetron sputtering method in various deposition conditions, such as Ar pressure, gas flow rates and sputtering gases. SEM, AFM and FT-IR techniques were used to analyze its structures and composition. As the Ar pressure and the flow rate increased, the insulating interlayer showed low insulating resistance due to its porous structure and defects. Oxygen deficiency in $SiO_2$ was decreased as fabricated by hydrogen reactive sputtering. We could enhance the surface mobility of sputtered adatoms by using Ar/$H_2$ sputtering gas and obtain a good surface roughness and insulating property. The optimum insulating resistance of 9.22 G$\Omega$ was obtained in Ar/30% $H_2$ mixed gas, flow rate 10sccm, and 1mTorr.