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Linear Stability Analysis of the Reacting Shear Flow
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The linear instability of reacting shear flow is analyzed with special emphasis on the effects
of the heat release and variable transport properties. Both analytic profiles and laminar solutions
of the boundary-layer equations are used as base flows. The growth rates of the instabilities are
sensitive to the laminar profiles, differing by more than a factor of 2 according to which profile

is used. Thus, it is important to base the analysis on accurate laminar profiles. Accounting for

variable transport properties also changes the mean profiles considerably, and so including them
in the computation of the laminar profiles is equally important. At larger heat release, two
modes that are stronger in the outer part of the shear layer have the highest growth rates ; they
also have shorter wavelengths than the center mode.
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1. Introduction

Prediction of the characteristics of chemically
reacting mixing layers is very important in a
number of technologies. For increased mixing, we
prefer to have turbulent flow, which occurs only
if the laminar flow is unstable. Therefore, it is im-
portant to analyze the stability of reacting shear
layers ; linear stability analysis is the most conve-
nient tool for this purpose.

The stability of nonreacting mixing layers has
been extensively investigated. In most of this work,
analytic mean velocity profiles (usually hyper-
bolic tangent or error functions) were used. The

* Corresponding Author,
E-mail : dsshin @hongik.ac.kr
TEL : +82-2-320-1477, FAX : +82-2-322-7003
Department of Mechanical System Design Engineering,
Hongik University, Seoul 121-791, Korea. (Manuscript
Received April 5, 2005; Revised May 16, 2006)

validity of doing so needs investigation.

For incompressible parallel inviscid flow, Rayleigh
(1880) showed that, if the velocity profile has an
inflection point, the flow is unstable. Lin (1955)
suggested that the inviscid mechanism dominates
at large Reynolds numbers with viscosity prod-
ucing only slight damping. Michalke (1964) nu-
merically integrated the Rayleigh stability equa-
tion with the hyperbolic-tangent velocity profile
for temporally as well as spatially growing dis-
turbances to incompressible flow ; the spatial case
results agreed well with experiments.

The effects of the mean velocity profile were
studied by Monkewitz and Huerre (1982), who
found that the amplification rate found with the
Blasius mixing layer velocity profile agreed well
with experimental results. Morkovin (1988) sug-
gested that only stability analysis based on mean
profiles derived from the boundary-layer equa-
tions should be compared with experimental re-
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sults ; this is consistent with Michalke’s proposi-
tion.

Trouve and Candel (1988) did linear stability
analysis of the inlet jet in a ramjet dump com-
bustor using hyperbolic-tangent velocity and tem-
perature profiles. They found that the density
variation has a significant effect on the instability.
Recently, Mahalingam et al.(1989) studied the
effects of heat release on the stability of co-flow-
ing, chemically reacting jets. They suggested that
the heat release due to chemical reaction stabi-
lized the flow.

For compressible flow, Sandham and Reynolds
(1989) solved the linearized inviscid compres-
sible stability equation and found maximum am-
plification at the frequency at which vortices are
found in the laboratory. They also found that
three-dimensional effects are important at high
Mach number.

In this paper, we consider a low-speed, plane
shear layer in which fuel and oxidizer are initial-
ly unmixed. Figure 1 shows the schematic dia-
gram of spatially developing shear layer. Laminar
profiles obtained by solving the boundary-layer
equations are used as input to linear stability an-
alysis. The effects of heat release in both the la-
minar flow and the instability are studied as are
the effects of variable transport properties. Both
temporally and spatially developing layers are
considered ; the former are easier to understand,
and the latter are used for comparison with ex-
perimental results.
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Fig. 1 Schematic diagram of spatially developing
shear layer

2. Laminar Flow Profiles

To generate mean profiles, we solved the (par-
abolic) two-dimensional boundary-layer equa-
tions in the low Mach number approximation.
The effects of density variation, which can be
quite large if the heating caused by chemical re-
action is large, must be retained. All dependent
variables are nondimensionalized using the values
on the high-speed side. Uniform pressure through
the shear layer and unity Lewis and Prandt! num-
bers are assumed for simplicity. We found that a
Prandtl number of 0.7 does not produce large
quantitative differences. Both freestreams are at
the same temperature. The inlet profiles are taken
from self-similar solutions of the equations for
the time developing flow at low heat release but
the temperature is arbitrarily increased so that
reaction will proceed. Chemistry is represented by
a single step irreversible scheme, involving fuel
F and oxidizer O, reacting to yield a product P:

veF +vo0 — vpP (1)

where vr, Vo, and vp are the stoichiometric co-
efficients for fuel, oxidizer, and product, respec-
tively. Both constant and variable property cases
are simulated. For the variable properties, power
laws in temperature and pressure are assumed :

#OCPO TO.7, KOCPO T0.7, DOC P1P1‘7 (2)

where 4 is the viscosity, « the thermal diffusivi-
ty, and D the mass diffusivity. The non-dimen-
sional adiabatic flame temperature, g, is related
to the heat of reaction € as follows:

Tad=Q+1 (3)

To satisfy the boundary-layer approximation, we
used an initial Reynolds number of 1% 10° based
on the vorticity thickness and the cold viscosity.
The vorticity thickness of the initial velocity pro-
file, 0w, is used as the reference length scale:

- _U-U
B | du/dy |max “)

To include coupling between chemical reaction,
heat release, and the velocity field, the conti-
nuity, momentum, energy, and species equations

Ow



Linear Stability Analysis of the Reacting Shear Flow

are solved simultaneously. As the boundary-layer
equations are parabolic, an implicit method (Crank-
Nicolson) is used. In the spatial layer, the correct
boundary condition for the normal velocity V as
y— oo is difficult to determine. We used the
integral relation derived from the y-momentum
equation :

%[:pUde+pm%—p_wWw =0 (5)
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where o is the density and U the streamwise
velocity.
The magnitude of the normal velocity is <1% of
the streamwise velocity in all computed profiles ;
this validates the use of the boundary-layer ap-
proximation.

Figures 2 compare the stréamwise velocity and
temperature profiles of the spatial layer for the
same inlet profile and show the effects of heat
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Fig. 2 Effect of variable properties of the spatially developing layer for : (a) velocity (b) temperature. ——,
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Fig. 3 Effect of heat release to the growth of the velocity thickness of spatially developing layer



1312 Yang Na, Seungbae Lee and Dongshin Shin

4.0

T
04 03 c.e 67 c.8 c.3 1.0 L4

Comparison of the hyperbolic-tangent and
laminar solution velocity profiles for the spa-

tially developing layer at 7o;=38. ,
hyperbolic-tangent function; --------- , la-
minar solution

release and variable properties on the laminar
flow. These profiles are compared at the same
nondimensional streamwise distance x for down-
stream from the ignition point. The nondimen-
sional adiabatic flame temperature Taq is 8 for
the reacting cases. Figure 3 shows that the vor-
ticity thickness dw with variable properties grows
more rapidly as the adiabatic flame temperature
increases. The significant difference between the
constant and variable property solutions indica-
tes that property variations need to be included
whenever there are large temperature variations.

Figure 4 compares the laminar solution with a
hyperbolic-tangent profile of the same vorticity
thickness. The profile obtained from the simula-
tion is fuller than the hyperbolic-tangent profile
and, as we shall see, has very different stability
properties.

3. Linear Stability Analysis

In linear inviscid stability analysis, all flow
variables are assumed to be the sum of the mean

and small wave-like fluctuations. The parallel flow
assumption is made for the mean flow, which
means that the predominant variations of the
mean flow properties vary in the direction normal
to the flow. All flow variables can be represented
in the form :

Fla,y, 2, )=fy)+f(x, 9,28 (6

The disturbances represented by the primed vari-
ables are assumed to have the form of traveling
waves :

(%, v, 2, £) =F(v)expli(ax+Bz—wt)] (7)

where f (y) is an eigenfunction assumed to be a
function of y only, @ and § are wave numbers in
the streamwise and spanwise directions, respec-
tively, and @ is the frequency. The relation be-
tween the wave numbers and the angle of dis-
turbance is

tan 6=8/a (8)

For the temporal stability analysis, & is real and
w is complex, whereas for the spatial analysis, @
is real and @ is complex. The amplification rates
for the two cases are w; and — a;, respectively.

The perturbation equations are derived by lin-
earizing the low Mach number equations without
using the boundary-layer approximations. Sub-
stituting Eq. (6) into these equations and neglect-
ing the products of disturbances yields the equa-
tions for the perturbations. From the continuity
and momentum equations, a disturbance equation
for the pressure is obtained :

., 20U
b aU—w

where U is the mean velocity and a prime deno-

P +haU—w)?~(P+p%) p=0(9)

tes differentiation with respect to y. This is the
three-dimensional equation ; for §==0, it reduces
the two-dimensional one. Equation (9) reduces
to the incompressible Rayleigh equation (Drazin,
1982) if density is constant, i.e., #=0. Finally,
0 can be eliminated in favor of the mean pres-
sure 1; using the state, energy, and species equa-
tions. Equation (9) then becomes

o (20U R, :
p—{ 28— K (aU~w)[RXN} 5

. T (10)
—(+5)p
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where R and T are the mean density and tem-
perature, respectively. [RXN] is a term that re-
presents the effect of density variation due to
chemical reaction and associated heat release. The
boundary conditions are obtained by considering
the asymptotic form of the solutions of Eq. (10).
As y— Foo, I’ and [RXN] become negligible
and the bounded solutions behave like

ply— —0)=Crexp(VP+ )  (lla)
Hly — 00) =Crexp (Va2 + B) (11b)

where C; and C; are arbitrary constants. A com-
bination of the shooting and Newton-Raphson
methods are used to solve Eq. (10). This method
is applicable to both the temporal and spatial
problems. Any velocity and temperature profiles
can be specified as input to the stability calcula-
tion ; in particular, either analytic functions or the
computed laminar profiles can be used.
According to Rayleigh’s inflection point the-
orem (Drazin, 1982), a necessary condition for
instability is that the laminar velocity profile has
an inflection point. For incompressible flow, this
condition requires UJ” to change sign at least once
in the flow domain. A stronger form of this con-
dition was obtained by Fjértoft (Drazin, 1982),
who proved that a necessary condition for insta-
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If we write the disturbance equation in terms
of the normal fluctuating velocity 9, then, in tem-
poral flow, the disturbance equation becomes

<ﬁ>, { (RU)’ +a'2}
R RH(U-0)
where C is the complex wave velocity. Multiply-
ing this equation by 7%,
to 0o, and integrating the first term by parts, we
obtain

=0 (12)

integrating from —oo

fw{wmzww (U—Cr)(RU’)lﬁlz}d

T 2 2
R,, 2 rlu=ci (13)
+ic f RUYTOP 11—
R U~ C|2

where D is the differential operator d/dy, and Cr
and C; are the real and imaginary parts of the
wave velocity, respectively. The imaginary part of
Eq. (13) is

_/ (RUY D)

RlU-cp®°

(14)
which can be satisfied only if (RU’)’ changes
sign at least once in the open domain (—co, ©0);
this is a necessary condition for instability. A
stronger form of this condition can be obtained
by considering the real part of Eq. (13):

bility is that U” (U — Us) <0 somewhere in the /“’" (U—C,) (RU)| D} d
field, where ys is a point at which U”=0 and —o0 RU-CP Y (1)
Us=U (ys). Here, we generalize these theorems _ /ﬂ» | Do+ 2| 0P p
to flows that have density variation. T e R Y
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Fig. 5 The function appearing in the necessary condition for temporal instability. -+ - « - y Taa=1; e s Taa=8
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Supposing that C;>0, multiplying Eq. (14) by
(Cr—Us)/C: and adding it to Eq. (15), we have

I (U=Uy) (RU) D]
= R|U-CP

__/wmmzwmlzd
—— [C1DAFEeIOR

dy
(16)

Thus, a necessary condition for instability is
(RU")'(U—Us) <0 somewhere on the domain
—ooy<oo, The mean profiles were searched
for points that satisfy this condition. Figure 5
shows that the cold flow has just one inflection
point, whereas the reacting flow has three. Figure
6 shows a test of the strong necessary condition
for instability. All three inflection points satisfy
the necessary condition. The reacting shear layer
should, therefore, be unstable to three distinct
modes.

We showed that the mean profiles for react-
ing flow have three inflection points and should
have three independent modes of instability. In
the temporal stability case, symmetry dictates that
two of these be reflections of each other. Figure 7
show the amplification rate and phase velocity
as a function of the wave number for a variable
property flow with T,4=8. For the amplification
rate, only two modes are shown. The first is the
center mode that arises from the central inflec-
tion point ; its phase velocity is the mean velocity
at the central inflection point. The second re-
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presents both of the modes due to the outer inf-
lection points. The phase velocities of the two
outer modes are different, as shown in Fig. 7(b),
and they approach the mean velocities at the outer
inflection points as the wave number increases.

The center mode travels at the same phase ve-
locity as in the cold flow, the average of the two
freestream velocities. One of the outer modes tra-
vels at lower speed than the center mode, whereas
the outer travels at higher speed. Similar results
were found in compressible flow by Sandham
(1989).

We shall show that, for large heat release, the
outer modes are more amplified and should do-
minate. These modes are also very sensitive to the
variation of the properties, and so the latter is
very important in this flow. Figure 8 shows the
effect of heat release on the maximum growth rate
for the spatially developing layer ; computed la-
minar profiles were used in these calculations. As
the heat release increases, the maximum ampli-
fication rate of the center mode decreases. The
maximum amplification rate in the cold flow is
0.128, but for the variable property case with 744,
it is 0.01, or only 8% that of the cold flow. On the
other hand, the amplification rate of the outer
mode changes very little as the heat release in-
creases. Consequently, at high heat release, the
other mode is more amplified than the center
mode. When 7T is 10, the outer mode has almost
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Fig. 6 The function appearing in the strong necessary condition for temporal instability.
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three times the amplification rate of the center
mode. Thus, reacting flows with high heat release
should be unstable to the short wavelength outer
modes.

The absolute and convective instability of the
spatially developing layer are distinguished by
the temporal growth rate, which is positive in
the absolute and negative in the convective case,
of the mode that dominates the response at the
source location. In physical terms, in absolute
instability, a locally generated small amplitude
transient grows exponentially in time, whereas in
convective instability, transient is convected away
and leaves the mean flow ultimately undisturbed.
Huerre and Monkewitz (1985) showed that a
flow is convectively unstable if the modes that
have zero group velocity are temporally damped,
i.e., the imaginary parts of the complex frequen-
cies are negative and absolutely unstable if all
are positive. We used this criterion to determine
the nature of the instability of the reacting mix-
ing layer. First, we found the complex frequency
wo, which makes the group velocity dw/da zero.
The imaginary part of this frequency wo is the
absolute growth rate that determines the nature
of the instability. Figure 9 shows the imaginary
part of w, as a function of the adiabatic flame
temperature T, All w,; are negative, and, there-
fore, the reacting mixing layers considered here
are convectively unstable.

We showed that the variation of the properties

through the reacting shear layer influences the
mean flow profiles significantly. Figure 10 shows
that that effect results in the difference in stability
characteristics when 7,,=8. The constant prop-
erty case has twice the growth rate of the center
mode of the variable property case ; however, the
latter has the growth rates of the outer modes,
which are almost 25% higher. The constant prop-
erty profile has the center and outer modes with
comparable amplification rates, but for the vari-
able property profile, the outer modes are do-
minant over the center mode. Again, the impor-
tance of the variable properties is-emphasized.

Squire’s theorem (Drazin, 1982) states that the
lowest Reynolds number for transition occurs when
the disturbances are two-dimensional, so two-
dimensional modes dominate the viscous insta-
bility of incompressible flows. The Reduction of
a three-dimensional problem to a two-dimen-
sional one lowers of the order of the system of
equation, reduces the number of integrations to
find the eigenvalue and reduces this size of the
parameter space that must be investigated. Once
the eigenvalue is known, calculation of the eigen-
function requires as many integrations as these
are components of the velocity. In inviscid prob-
lems (infinite Reynolds number), the transfor-
mation is of some help, but the advantages of
Squire’s theorem may not be obtained.

In compressible flows, the most amplified modes
are three-dimensional (Sandham and Reynolds,

0.060 T T T T

Woi

Tad

Fig. 9 Variation of w,; with adiabatic flame temperature (spatial instability)
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1989). We tried to determine whether the most
amplified modes are two- or three-dimensional
in the incompressible low-speed reacting mixing
shear layer. Fig. 11 shows that the disturbances
become more stable as the obliquity increases.
Therefore, two~dimensional modes are more am-
plified than three-dimensional ones and three-
dimensionality is not important in this case.
Here, the validity of using analytical flow pro-
files such as hyperbolic-tangent and error func-
tions is investigated. To accomplish this goal, we
compare results obtained from these profiles with
ones based on the boundary-layer solutions.
The analytical profiles also have three different

0.0200
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modes. Figures 12 show the amplification rates
vs wave number. In Fig. 12(a), results for tem-
poral layers are given. For the center mode, the
differences are small, but for the outer mode, the
growth rate obtained from the laminar solution is
about twice that obtained with the error func-
tion. This is not surprising since the principal
differences in the profiles are found in the outer
parts of the layers. In Fig. 12(b), the hyperbolic-
tangent function results are compared with the
laminar solution for the spatial layer. Again,
there is little difference for the center mode, but
for the outer mode, the hyperbolic-tangent func-
tion has a lower growth rate than the laminar
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Fig. 10 Effect of variation of properties on the growth rate (temporal instability)
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solution. From these results, we find that the use
of accurate laminar profiles is essential. This is
consistent with the report by Monkewitz and
Huerre (1982).

Heat release might be expected to increase the
growth rate of the thickness of a mixing layer
due to displacement effects caused by dilatation.
However, the experiments of Wallace (1981) sug-
gested a slight decrease in the growth rate of
reacting mixing layers with increasing heat re-
lease. More recently, Hermanson and Dimotakis
(1989) conducted with hydrogen and fluorine at
#;=0.4 and T,=1. Fig. 13 compares their ex-
perimental data with our computed normalized

0.07

Lee and Dongshin Shin

maximum growth rates. The growth rates are
normalized by their values at zero heat release
and A T'may is the maximum temperature rise over
the ambient temperature. The maximum ampli-
fication rate |a:lmex is linearly related to the
growth rate of the shear layer dd/dx (Morkovin,
1988 ; Sandham and Reynolds, 1989). Fig. 13
shows a good qualitative agreement between
the linear stability results and the experimental
growth rates; the growth rate decrease with in-
creasing heat release. Because of using maximum
growth rates instead of the combination of unsta-
ble modes, linear stability theory predicts too
large a decrease.
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Shin et al. (2005) and Brown and Roshko (1974)
identified large spanwise vortices as the principal
features of two—-dimensional mixing layers in the
non-linear region preceding the establishment of
fully turbulent flow conditions. The observed ini-
tial vortex spacings very nearly correspond to the
wavelength of the most amplified mode of insta-
bility. We compare the normalized mean vortex
spacings measured by Hermanson and Dimotakis
(1989) with the wavelengths of the most unstable
modes. The wavelengths have been normalized by
the wavelengths at zero heat release. To represent
the effect of heat release, we used a normalized
mean density reduction defined by Hermanson

1319

and Dimotakis (1989)

71

. /= T
Ap/pr=1—p/pr=1— - Wa,ﬂ (15)
where o is the integrated mean density in the
layer, 71,2 are the 1% points of the mean tempera-
ture profile on the high~ and low-speed sides, and
AT is the temperature rise at each point across
the layer. Fig. 14 shows that the wavelengths of
the outer modes, which are more unstable than
the center modes at high heat release, agree well
with the experimental mean vortex spacings. The
wavelengths of the center mode increases with

increasing heat release.
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Fig. 13 Normalized growth rate versus heat release. T2=1, #:=0.4, —

present ; O, Wallace (1981) ;

A, Mungal (unpublished data); +, Hermanson and Dimotakis (1989)
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5. Summary

We have shown that stability of reacting flows
can be studied by linear stability analysis. The
growth rates are very sensitive to the mean prof-
iles. Boundary-layer equation solutions obtained
with variable transport properties are more real-
istic representations of an actual flow than an-
alytically prescribed functions and thus provide
a better basis for stability analysis. For the react-
ing plane mixing layer with variable density, a
necessary condition for instability has been de-
rived. New inflectional modes of instability are
found to exist in the outer part of the mixing la-
yer. Heat release stabilizes the flow and, in par-
ticular, greatly reduces the growth rate of the
center mode. The growth rates of the outer modes,
which do not exist in a cold flow, are relatively
insensitive to heat release. For the large heat
releases typical of combusting flows, the outer
mode is more amplified than the center mode ; its
wavelength is shorter than that of the center
mode. Even at high heat release, two—dimension-
al waves are more amplified than three dimen-
sional ones.
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