• 제목/요약/키워드: Flow Loss

검색결과 2,450건 처리시간 0.026초

연속 맨홀에서의 손실계수 산정 (An Estimation of Head Loss Coefficients at Continuous Circular Manhole)

  • 윤영노;김정수;한정석;윤세의
    • 한국방재학회:학술대회논문집
    • /
    • 한국방재학회 2008년도 정기총회 및 학술발표대회
    • /
    • pp.731-734
    • /
    • 2008
  • Urban sewer systems are designed to operate in open-channel flow regime and energy loss at circular manholes are usually not significant. However, the energy loss at manholes, often exceeding the friction loss of pipes under surcharge flow, is considered as one of the major causes of inundation in urban area. Therefore, it is necessary to analyze the head loss associated with manholes, especially in surcharge flow. Hydraulic experimental apparatus with two circular manholes was installed for this study. The range of the experimental discharges were from $1.0\ell/sec$ to $4.4\ell/sec$. Head loss coefficient was maximum because of strong oscillation of water surface when the range of manhole depth ratios$(h_m/D_{in})$ were from 1,2 to 1.25. The average head loss coefficients for upstream manhole and downstream manhole were 0.58 and 0.23 respectively. Head loss at upstream manhole is nearly 2.5 times more than one at downstream manhole.

  • PDF

혼류 펌프의 성능 해석 (Performance prediction of mixed-flow pumps)

  • 오형우;윤의수;정명균;하진수
    • 대한기계학회논문집B
    • /
    • 제22권1호
    • /
    • pp.70-78
    • /
    • 1998
  • The present study has tested semi-empirical loss models for a reliable performance prediction of mixed-flow pumps with four different specific speeds. In order to improve the predictive capabilities, this paper recommends a new internal loss model and a modified parasitic loss model. The prediction method presented here is also compared with that based on two-dimensional cascade theory. Predicted performance curves by the proposed set of loss models agree fairly well with experimental data for a variety of mixed-flow pumps in the normal operating range, but further studies considering 'droop-like' head performance characteristic due to flow reversal in mixed-flow impellers at low flow range near shut-off head are needed.

터보펌프 인듀서의 유동 및 성능의 수치적 평가 (Numerical Evaluation of Flow and Performance of Turbo-Pump Inducers)

  • 심창열;강신형
    • 유체기계공업학회:학술대회논문집
    • /
    • 유체기계공업학회 2001년도 유체기계 연구개발 발표회 논문집
    • /
    • pp.243-249
    • /
    • 2001
  • Steady state flow calculations are executed for turbo-pump inducers of modem design to validate the performance of Tascflow code. Hydrodynamic performance is evaluated and structure of the passage flow and leading edge recirculation are also investigated. Calculated results show good coincidence with experimental data of static pressure performance and velocity profiles over the leading edge. Upstream recirculation, tip leakage and vortex flow at the blade tip and near leading edge are main source of pressure loss. Amount of pressure loss from the upstream to the leading edge corresponds to that of pressure loss through the whole blade. The total viscous loss is considerably large due to the strong secondary flow.

  • PDF

보통형 콤바인 부착용 유채 예취장치 개발 (III) - 유채 기계 수확 손실 절감을 위한 요인 구명 - (Development of a Rapeseed Reaping Equipment Attachable to a Conventional Combine (Ill) - Analysis of Principal Factor for Loss Reduction of Rapeseed Mechanical Harvesting -)

  • 이충근;최용;전현종;이승규;문성동;김송수
    • Journal of Biosystems Engineering
    • /
    • 제34권2호
    • /
    • pp.114-119
    • /
    • 2009
  • Field test was conducted to investigate primary factors reducing rapeseed harvesting using a reciprocating cutter-bar of combine. The results showed that the correlation between crop moisture content and yield loss had a U-type, which indicated that the yield reduction increased at too high and too low crop moisture contents. The proper ranges of crop moisture contents were 27${\sim}$35%, 21${\sim}$56%, and 62${\sim}$73% in case of grain, pod and stem, respectively. Crop moisture content was negatively correlated with header loss, but positively correlated with threshing loss. In contrary, stem moisture content showed positive correlations with total loss, threshing loss and separation loss. Working speed was positively correlated with header loss. Total flow rate, pod flow rate and stem flow rate were highly correlated with threshing loss and separation loss. However, grain flow rate did not show any correlation with total loss. According to the principal component analysis, two principal components were derived as components with eigenvalues greater than 1.0. The contribution rates of the first and the second components were 52.7% and 38.9%, which accounted for 91.6% of total variance. As a contributive factor influencing total loss of rapeseed mechanical harvesting, a crop moisture content factor was greater than a crop flow rate factor. The stepwise multiple regression analysis for total loss was conducted using crop moisture content factor, crop flow rate factor and coefficient. However, the model did not show any correlation among independent and dependent factors ($R^2$=0.060).

축류압축기 익렬에서의 역류 유동 특성에 대한 수치적 연구 (Numerical Study on Reverse Flow Charcteristics in an Axial Compressor Cascade)

  • 손창현
    • 대한기계학회논문집B
    • /
    • 제24권5호
    • /
    • pp.615-622
    • /
    • 2000
  • Numerical simulation is performed with Denton's code to get pressure loss coefficients in wide range of reverse flow incidence(from -90 degree to +85 degree) for an axial compressor cascade. As a results, it is found that the pressure loss coefficient is increased with incidence and there exist critical incidence which corresponds to the maximum pressure loss coefficient. Pressure loss coefficient with bigger incidence than its critical value is decreased. The effect of increasing incidence in a cascade extremely reduce the mass flow rate by the large flow separation region. Consequently this effect reduce the portion of dynamic pressure in the total pressure loss and beyond the critical incidence the pressure loss coefficient decrease.

간단한 손실모델을 이용한 단단축류압축기 탈설계점 성능예측 (Off-Design Performance Prediction of an Axial Flow Compressor Stage Using Simple Loss Correlations)

  • 김병남;정명균
    • 대한기계학회논문집
    • /
    • 제18권12호
    • /
    • pp.3357-3368
    • /
    • 1994
  • Total pressure losses required to calculate the total-to-total efficiency are estimated by integrating empirical loss coefficients of four loss mechanisms along the mean-line of blades as follows; blade profile loss, secondary flow loss, end wall loss and tip clearance loss. The off-design points are obtained on the basis of Howell's off-design performance of a compressor cascade. Also, inlet-outlet air angles and camber angle are obtained from semi-empirical relations of transonic airfoils' minimum loss incidence and deviation angles. And nominal point is replaced by the design point. It is concluded that relatively simple loss models and Howell's off-design data permit us to calculate the off-design performance with satisfactory accuracy. And this method can be easily extended for off-design performance prediction of multi-stage compressors.

수두손실률에 의한 방조제 침투류 감시기법 개발 (Development of the Seepage flow Monitoring Method by the Hydraulic Head Loss Rate on Sea Dike)

  • 임성훈;윤창진;김성필;허준;강병윤
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2010년도 추계 학술발표회
    • /
    • pp.60-68
    • /
    • 2010
  • In this study, the seepage flow monitoring method by hydaulic head loss rate graph was developed for the purpose of monitoring the seepage flow from the see side or from the lake on sea dike in which seepage force was varied periodically. The hydraulic head loss rate was defined in this method. The value of the rate is in the range from 0 to 1. the value of 0 means perfectly free flow of seepage. the value of 1 means perfect waterproofing. The value of coefficient of determination in the hydraulic head loss rate graph closer to 1 means that the seepage flow way is stable. The value of coefficient of determination in the hydraulic head loss rate graph closer to 0 means that the hole may exist or the piping may be in the progress. The pore water pressure data measured in Saemangeum sea dike was analyzed with the developed method The result showed that the variation of seepage flow state was detected sensitively by this method and the interception effect of sea dike could be estimated quantitatively.

  • PDF

차압식 유량계에서 점탄성유체의 유출 및 손실계수 (Discharge and loss coefficients for viscoelastic fluids in differential pressure flow meters)

  • 전우청;조병수;백병준;박복춘
    • 대한기계학회논문집B
    • /
    • 제20권4호
    • /
    • pp.1501-1509
    • /
    • 1996
  • Differential pressure devices such as an orifice and Venturi are widely used in the measurement of flow rate of fluid mainly due to cost effectiveness and easy installation. In the current study, the viscoelastic effect on discharge and loss coefficients of those flow meters were investigated experimentally. Aqueous solutions of Polyacrylamide (200, 500, and 800 ppm) as viscoelastic fluids were used. Discharge coefficient of an orifice for viscoelastic fluids increased significantly up to approximately 15-20% when compared with that for water, while loss coefficient decreased up to 10-25% depending on the diameter ratio, .betha.. Also, pressure recovery for viscoelastic fluids was extended much longer than that for water. On the other hand, discharge and loss coefficients of Venturi for viscoelastic fluids were found to be strongly dependent on the Reynolds number. In both flow meters, the concentration effect for discharge and loss coefficients was not observed at more over than 200 ppm of aqueous solution. Conclusively, orifice and Venturi flow meters should be calibrated very carefully in the flow rate measurement for viscoelastic fluids.

폭방향으로 분사되는 막냉각 제트의 3차원 유동특성 및 압력손실 (Three-dimensional flow and pressure loss of a film-cooling jets injected in spanwise direction)

  • 이상우;김용범
    • 대한기계학회논문집B
    • /
    • 제20권4호
    • /
    • pp.1363-1375
    • /
    • 1996
  • Oil-film flow visualizations and three-dimensional flow measurements using a five-hole probe have been conducted to investigate three-dimensional flow characteristics and total pressure losses of a row of film-cooling jets injected in spanwise direction. For several span-to-diameter ratios, experiments are performed in the case of three velocity ratios of 0.5, 1.0 and 1.5. The flow measurements show that downstream flow due to the injection is characterized by a single streamwise vortex instead of a pair of counter-rotating vortices, which appear in the case of streamwise injection, and the vortex strength strongly depends on the velocity ratio. Regardless of the velocity*y ratio, presence of the spanwise film-cooling jets always produces total pressure loss, which is pronounced when the velocity ratio is large. It has also been found that the production of the total pressure loss is closely related to the secondary vortical flow. In addition, effects of the span-to-diameter ratio on the flow and total pressure loss are discussed in detail.

축류터빈에서 끝간격 유동에 의한 편향각과 압력손실의 모형 (Modeling of Deviation Angle and Pressure Loss Due to Rotor Tip Leakage Flow Effects in Axial Turbines)

  • 윤의수;박부룡;정명균
    • 대한기계학회논문집B
    • /
    • 제22권11호
    • /
    • pp.1591-1602
    • /
    • 1998
  • Simple spanwise distribution models of deviation angle and pressure loss coefficient due to the tip leakage flow are formulated for use in association with the streamline curvature method as a flow analysis. Combining these new models with the previous deviation and loss models due to secondary flow, a robust streamline curvature method is established for flow analysis of single-stage, subsonic axial turbines with wide ranges of turning angle, aspect ratio and blading type. At the exit from rotor rows, the flow variables are mixed radially according to a spanwise transport equation. The proposed streamline curvature method is tested against a forced vortex type turbine as well as a free vortex type one. The results show that the spanwise variations of flow angle, axial velocity and loss coefficients at rotor exit are predicted with good accuracy, being comparable to a steady three-dimensional Navier-Stokes analysis. This simple and fast flow analysis is found to be very useful for the turbine design at the initial design phase.