• Title/Summary/Keyword: Flow Dynamic Design

Search Result 566, Processing Time 0.028 seconds

Aeroelastic Analyses of Space Rocket Configuration Considering Viscosity Effects (유동점성효과를 고려한 우주발사체 형상의 천음속 공탄성해석)

  • Kim, Yo-Han;Kim, Dong-Hyun
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2011.10a
    • /
    • pp.64-71
    • /
    • 2011
  • In this study, steady and unsteady aerodynamic analyses of a huge rocket configuration have been conducted in a transonic flow region. The launch vehicle structural response are coupled with the transonic flow state transitions at the nose of the payload fairing. The developed fluid-structure coupled analysis system is applied for aeroelastic computations combining computational structural dynamics(CSD), finite element method(FEM) and computational fluid dynamics(CFD) in the time domain. It can give very accurate and useful engineering data on the structural dynamic design of advanced flight vehicles. For the nonlinear unsteady aerodynamics in high transonic flow region, Navier-Stokes equations using the structured grid system have been applied to the rocket configurations. Also, it is typically shown that the current computation approach can yield realistic and practical results for rocket design and test engineers.

  • PDF

Machine Learning Based Architecture and Urban Data Analysis - Construction of Floating Population Model Using Deep Learning - (머신러닝을 통한 건축 도시 데이터 분석의 기초적 연구 - 딥러닝을 이용한 유동인구 모델 구축 -)

  • Shin, Dong-Youn
    • Journal of KIBIM
    • /
    • v.9 no.1
    • /
    • pp.22-31
    • /
    • 2019
  • In this paper, we construct a prototype model for city data prediction by using time series data of floating population, and use machine learning to analyze urban data of complex structure. A correlation prediction model was constructed using three of the 10 data (total flow population, male flow population, and Monday flow population), and the result was compared with the actual data. The results of the accuracy were evaluated. The results of this study show that the predicted model of the floating population predicts the correlation between the predicted floating population and the current state of commerce. It is expected that it will help efficient and objective design in the planning stages of architecture, landscape, and urban areas such as tree environment design and layout of trails. Also, it is expected that the dynamic population prediction using multivariate time series data and collected location data will be able to perform integrated simulation with time series data of various fields.

Overload Surge Investigation Using CFD Data

  • Flemming, Felix;Foust, Jason;Koutnik, Jiri;Fisher, Richard K.
    • International Journal of Fluid Machinery and Systems
    • /
    • v.2 no.4
    • /
    • pp.315-323
    • /
    • 2009
  • Pressure oscillations triggered by the unstable interaction of dynamic flow features of the hydraulic turbine with the hydraulic plant system - including the electrical design - can at times reach significant levels and could lead to damage of plant components or could reduce component lifetime significantly. Such a problem can arise for overload as well as for part load operation of the turbine. This paper discusses an approach to analyze the overload high pressure oscillation problem using computational fluid dynamic (CFD) modeling of the hydraulic machine combined with a network modeling technique of the hydraulic system. The key factor in this analysis is the determination of the overload vortex rope volume occurring within the turbine under the runner which is acting as an active element in the system. Two different modeling techniques to compute the flow field downstream of the runner will be presented in this paper. As a first approach, single phase flow simulations are used to evaluate the vortex rope volume before moving to more sophisticated modeling which incorporates two phase flow calculations employing cavitation modeling. The influence of these different modeling strategies on the simulated plant behavior will be discussed.

Immune Based 2-DOF PID Controller Design for Complex Process Control

  • Kim, Dong-Hwa
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2002.10a
    • /
    • pp.70.2-70
    • /
    • 2002
  • In the thermal power plant, it is difficult to maintain strict control of the steam temperature in order to avoid thermal stress, because of variation of the heating value according to the fuel source, the time delay of changes in main steam temperature versus changes in fuel flow rate, difficulty of control on the main steam temperature control and the reheater steam temperature control system owing to the dynamic response characteristics of changes in steam temperature and the reheater steam temperature, fluctuation of inner fluid water and steam flow rates widely during load-following operation. Up to the present time, the PID controller has been used to operate this system...

  • PDF

LARGE EDDY SIMULATION OF TURBULENT FLOWS AND DIRECT/DECOUPLED SIMULATIONS OF AEROACOUSTICS - PRESENT STATUS AND FUTURE PROSPECT -

  • Kato, Chisachi
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2010.05a
    • /
    • pp.2-4
    • /
    • 2010
  • Due to rapid progress in the performance of high-end computers, numerical prediction of fluid flow and flow-induced sound is expected to become a vital tool for aero- and hydro- dynamic design of various flow-related products. This presentation focuses on the applications of large-scale numerical simulations to complex engineering problems with a particular emphasis placed on the low-speed flows. Flow field computations are based on a large eddy simulation that directly computes all active eddies in the flow and models only those eddies responsible for energy dissipations. The sound generated from low-speed turbulent flows are computed either by direct numerical simulation or by decoupled methods, according to whether or not the feedback effects of the generated sound onto the source flow field can be neglected. Several numerical examples are presented in order to elucidate the present status of such computational methods and discussion on the future prospects will also be given.

  • PDF

Sensitivity Analysis of Shape Design Parameters of a Toque Converter Using Potential Flow (포텐셜 유동 해석을 이용한 토크 컨버터의 형상설계 파라미터들의 민감도 해석)

  • 김준양;이장무;박찬일;임원식
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1994.10a
    • /
    • pp.924-929
    • /
    • 1994
  • In using a performance model of a torque converter determined by its gemetric condition, it is possible that the analysis of two arbitrary converters produces the the same results because of the same value of equivalent parameters despite their different shapes. Therefore, it is necessary to understand the effect of shape factor on dynamic perfomance, and equivalent parameters reoresenting a performace model of a converter should into its defined by the behavior of flow field. In this study, torus flow of a torque converter is changed into its equivalent system defined by the behavior of flow, and govering equations for the system are presented and used for analysis. Equivalent parameters are obtained from the results of flow analysis and are compared with parameters of one dimensional performance model. The influence that shape change of a converter has on the behavior of flow and the equivalent parameters is studied qualitatively.

  • PDF

A Study on Vibration Power Flow of 2-Dimension Structure Travelling from the Source (진동원으로부터 전달되는 2차원 구조물의 진동파워흐름에 관한 연구)

  • 노영희;김동영;홍도관;권용수;안찬우;한근조
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.10a
    • /
    • pp.879-882
    • /
    • 2002
  • To control the vibration and sound of structure, it is important to analyze the dynamic action of structure. And through those analysis, the vibration source and the flow path is understood. To grasp that, when the two-dimension plate structure is shaken by a harmonic point excitation with the natural frequency using the finite element method, this paper presents the relation between vibration power flow and mode shape. As those results present to vector flow, the vibration power flow is visualized.

  • PDF

Fluid-elastic Instability in a Tube Array Subjected to Two-Phase Cross Flow (2 상 횡 유동장에 놓인 관군의 유체탄성불안정성)

  • Sim, Woo-Gun;Park, Mi-Yeon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.33 no.2
    • /
    • pp.124-132
    • /
    • 2009
  • Experiments have been performed to investigate fluid-elastic instability of tube bundles, subjected to twophase cross flow. Fluid-elastic is the most important vibration excitation mechanism for heat exchanger tube bundles subjected to the cross flow. The test section consists of cantilevered flexible cylinder(s) and rigid cylinders of normal square array. From a practical design point of view, fluid-elastic instability may be expressed simply in terms of dimensionless flow velocity and dimensionless mass-damping parameter. For dynamic instability of cylinder rows, added mass, damping and the threshold flow velocity are evaluated. The Fluid-elastic instability coefficient is calculated and then compared to existing results given for tube bundles in normal square array.

Simulation System for Earthmoving Operation with Traffic Flow

  • Kyoungmin Kim;Kyong Ju Kim;Hyeon Jeong Cho;Sang Kyu Lee
    • International conference on construction engineering and project management
    • /
    • 2009.05a
    • /
    • pp.1359-1363
    • /
    • 2009
  • The object of this research is to develop a simulation system for earthmoving operations in consideration of the impact of congestion in-between equipment and existing traffic flow around the site. The congestion in-between equipment and traffic flow affect work productivity. The conventional discrete event simulation, however, has limitations in simulating the flow of construction equipment. To consider the impact of congestion in-between equipment and existing traffic flow, in this paper, a multi-agent based simulation model that can realize characteristics of truck behavior more accurately to consider the impact of congestion was proposed. In this simulation model, multiple agents can identify environmental changes and adapt themselves to the new environment. This modeling approach is a better choice for this problem since it describes behavioral characteristics of each agent by sensing changes in dynamic surroundings. This study suggests a detailed system design of the multi-agent based simulation system.

  • PDF

Analytical Study on the Discharge Transients of a Steam Discharging Pipe (증기방출배관의 급격과도현상에 대한 해석적 연구)

  • 조봉현;김환열;강형석;배윤영;이계복
    • Journal of Energy Engineering
    • /
    • v.7 no.2
    • /
    • pp.202-208
    • /
    • 1998
  • As in the other industrial processes, a nuclear power plant involves a steam relieving process through which condensable steam is discharged and condensed in a subcooled pool. An analysis of steam discharge transients was carried out using the method of characteristics to determine the flow characteristics and dynamic loads of piping that are used for structural design of the piping and its supports. The analysis included not only the steam flow rate but also the flow rates of the air and water which originally exist in the pipe. The analytical model was developed for a uniform pipe with friction through which the flow was discharged into a suppression pool. Including the combinations of system elements such as reservoir, valve and branching pipe lines. The piping flow characteristics and dynamic loads were calculated by varying system pressure, pipe length, and submergence depth. It was found that the dynamic load, water clearing time and water clearing velocity at the water/air interface were dependent not only on the system pressure and temperature but also on the pipe length and submergence depth.

  • PDF