References
- Bae, S. W., Yu, J. S. (2017). Predicting the Real Estate Price Index Using Deep Learning. Korea Real Estate Research Institute 27(3), pp. 71-86.
- Batty, M. (2013). Big data, smart cities and city planning. Dialogues in Human Geography, 3(3), pp. 274-279. https://doi.org/10.1177/2043820613513390
- Blais, P. (2011). Perverse cities: hidden subsidies, wonky policy, and urban sprawl, UBC Press.
- Brockwell, P. J., Davis, R. A., Calder, M. V. (2002). Introduction to time series and forecasting, Springer.
- Brownlee, J. (2017). Long Short-Term Memory Networks With Python. Machine Learning Mastery.
- Curwell, S., M. Deakin, I. Cooper, K. Paskaleva-Shapira, Ravetz, J., Babicki, D. (2005). "Citizens' expectations of information cities: implications for urban planning and design." Building Research & Information 33(1), pp. 55-66. https://doi.org/10.1080/0961321042000329422
- Deren, L., Qingquan, L. (1997). Study on a hybrid data structure in 3D GIS, Acta Geodaetica et Cartographica Sinica 2.
- Ding, M., Bressler, S. L., Yang, W., Liang, H. (2000). Short-window spectral analysis of cortical eventrelated potentials by adaptive multivariate autoregressive modeling: data preprocessing, model validation, and variability assessment. Biological cybernetics 83(1), pp. 35-45. https://doi.org/10.1007/s004229900137
- Goldberg, D. E., Holland, J. H. (1988). Genetic algorithms and machine learning. Machine learning 3(2), pp. 95-99. https://doi.org/10.1023/a:1022602019183
- Gulli, A., Pal, S. (2017). Deep Learning with Keras, Packt Publishing Ltd.
- Ha, J. H., Lee, Y. H., Kim, Y. H. (2016). Forecasting the precipitation of the next day using deep learning. Journal of Korean Institute of Intelligent Systems 26(2), pp. 93-98. https://doi.org/10.5391/JKIIS.2016.26.2.093
- Haykin, S. S. (2009). Neural networks and learning machines, Pearson Upper Saddle River.
- Healey, P. (2006). Urban complexity and spatial strategies: Towards a relational planning for our times, Routledge.
- Kim, M. K., Hong, C. (2016). The Artificial Neural Network based Electric Power Demand Forecast using a Season and Weather Informations. Journal of the Institute of Electronics and Information Engineers 53(1), pp. 71-78. https://doi.org/10.5573/ieie.2016.53.1.071
- Kim, M. Y. The Development of Visualization Indicators for Case-study of Urban Geo-Spatial Information Visualization. Journal of The Korean Digital Architecture and Interior Association 12.
- Kitchin, R. (2014). The real-time city? Big data and smart urbanism. GeoJournal 79(1), pp. 1-14. https://doi.org/10.1007/s10708-013-9516-8
- Kotsiantis, S. B., Zaharakis, I., Pintelas, P. (2007). Supervised machine learning: A review of classification techniques. Emerging artificial intelligence applications in computer engineering 160, pp. 3-24.
- Lafarge, F., Mallet, C. (2011). Building large urban environments from unstructured point data. Iccv.
- Lee, T. H., Jeon, M. J. (2018). Prediction of Seoul House Price Index Using Deep Learning Algorithms with Multivariate Time Series Data. SH Urban Research & Insight 8(2), pp. 39-56. https://doi.org/10.26700/shuri.2018.08.8.2.39
- Nicholson, D. G., King, J. C. (1997). Method and apparatus for producing a hybrid data structure for displaying a raster image, Google Patents.
- Park, J. J., Kim, H. K., Bae, Y. J. (2015). An Analysis on the Changes in Publicly Noticed Value of Real Estate Price (PNV) on Household's Property Tax. Real Estate Research 25(3), pp. 27-39.
- Rathore, M. M., Ahmad, A., Paul, A., Rho, S. (2016). Urban planning and building smart cities based on the internet of things using big data analytics. Computer Networks 101, pp. 63-80. https://doi.org/10.1016/j.comnet.2015.12.023
- Scholten, H. J., Stillwell, J. (2013). Geographical information systems for urban and regional planning, Springer Science & Business Media.
- Shin, D., Aliaga, D., Tun er, B., Arisona, S. M., Kim, S., Z nd, D., Schmitt, G. (2015). Urban sensing: Using smartphones for transportation mode classification. Computers, Environment and Urban Systems 53, pp. 76-86. https://doi.org/10.1016/j.compenvurbsys.2014.07.011
- Sutton, R. S., Barto, A.G. (1998). Introduction to reinforcement learning, MIT press Cambridge.
- Touchette, P. E., MacDonald, R. F., Langer, S. N. (1985). A scatter plot for identifying stimulus control of problem behavior. Journal of applied behavior analysis 18(4), pp. 343-351. https://doi.org/10.1901/jaba.1985.18-343
- Wilson, T. D. (2000). Human information behavior. Informing science 3(2), pp. 49-56. https://doi.org/10.28945/576