• Title/Summary/Keyword: Flow Control System

검색결과 3,080건 처리시간 0.381초

Measurement and Simulation of Heating Energy for Apartments with District Heating (지역난방 아파트에 대한 난방에너지 실측 및 시뮬레이션)

  • Lee, Eun Ju;Lee, Doo Young;Hong, Hiki;Kim, Young Kyun
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • 제26권12호
    • /
    • pp.572-578
    • /
    • 2014
  • Heating energy was measured in an apartment housing unit with a district heating system, varying the kind of hot water distributors. Ondol coils passing through a living room raised the temperature of the room where the heating was turned off. Including this characteristic of Ondol heating into the modeling, we performed simulations and showed a verification by comparison with the results of measurements. As a result, a main flow control method, which changes hot water flow rate supplied to a housing unit according to the thermal load, can reduce the supplied flow rate and lower the return temperature, compared with a constant flow method. That can result in decreased heat loss in utility-pipe conduits even though the heating energy supplied is almost the same. An outdoor reset control that raises the temperature of the supplied hot water if the outdoor temperature falls has the effect of a quicker response in heating than the reduced flow rate and return temperature.

Investigation of passive flow control on the bluff body with moving-belt experiment

  • Rho, Joo-Hyun;Lee, Dongho;Kim, Kyuhong
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제17권2호
    • /
    • pp.139-148
    • /
    • 2016
  • The passive control methods such as horizontal and vertical fences on the lower surface of the bluff body were applied to suppress the vortex shedding and enhance the aerodynamic stability of flow. For investigating the effects of the passive control methods, wind tunnel experiments on the unsteady flow field around a bluff body near a moving ground were performed. The boundary layer and velocity profiles were measured by the Hot Wire Anemometer (HWA) system and the vortex shedding patterns and flow structures in a wake region were visualized via the Particle Image Velocimetry (PIV) system. Also, it is a measuring on moving ground condition that the experimental values of the critical gap distances, Strouhal numbers and aerodynamic force FFT analyses. Through the experiments, we found that the momentum supply due to moving ground caused the vortex shedding at the lower critical gap distance rather than that of fixed ground. The horizontal and vertical fences increase the critical gap distance and it can suppress the vortex shedding. Consequently, the stability characteristics of the bluff body near a moving ground could be effectively enhanced by the simple passive control such as the vertical fences.

Development of Portable System for Measuring pH in Blood (휴대용 혈중pH 측정시스템의 구현)

  • 정도운;김우열;배진우;강성철;심윤보;전계록
    • Proceedings of the IEEK Conference
    • /
    • 대한전자공학회 2001년도 하계종합학술대회 논문집(5)
    • /
    • pp.195-198
    • /
    • 2001
  • We developed the portable blood analysis system, which can be measured pH of the blood. This system is composed to electronic circuit, mechanism, and system software. Electronic circuit is composed to the sensor, pre-amp part, temperature regulation part, fluid sensing part, A/D(analog to digital) conversion part, main and peripheral device processing part. And the mechanism is composed to the flow cell and the liquid flow part. The liquid flow part is consisted of blood and washing control system under the control of the 6-channel solenoid valve and syringe rump. The system software is composed to measurement program, calibration program, washing and diagnostic program. The program of each routine is designed as sequential process for an efficiency. And the portable pH analysis system used two-point calibration method using the two types of corrective liquid. As a result, we obtained the calibration curve and calculated the value of pH. For verifying the system, we confirmed the output voltage of the sensor, and estimated reappearance of system using the standard liquid.

  • PDF

Numerical Investigation on Wall Flow Control for Preventing Contaminants Deposition inside a Duct (덕트 내 오염물질 퇴적 방지를 위한 벽면유동 제어에 관한 해석적 연구)

  • Lee, Banguk;Lee, Jeekeun
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • 제25권5호
    • /
    • pp.261-268
    • /
    • 2013
  • Technologies for preventing contaminants deposition are a key issue in a modern duct system. When particulate matters deposit inside the exhaust pipes, which are widely used in the Urea-SCR system to reduce $NO_x$ emission from heavy duty diesel engines, many problems arise associated with increased flow resistance and corrosion. Therefore, the development of the urea deposition avoidance technologies is being treated as an important issue of the Urea-SCR system. An analytical study was carried out to investigate the effects of the wall flow around the mixer with the variation of the mixer housing surrounding and supporting the mixer, which is designed to increase the wall flow and then to reduce droplet deposition. The housing angles and the position of the mixer were changed:angles of $0^{\circ}$, $1^{\circ}$, $2^{\circ}$, and $3^{\circ}$, and mixer positions of 0 L, 0.5 L, and 1 L. The axial velocity distributions, maximum velocity, the half-width, and momentum distribution of the wall flow were investigated to examine the effect of the mixer-housing assembly geometry.

Hierarchical Flow Control in a Dynamic Multi-stage Manufacturing System (동적인 다단계 제조시스템에서의 계층적 흐름 통제 방법)

  • Ro, In-Kyu;Kim, Jin-Kyu
    • Journal of Korean Institute of Industrial Engineers
    • /
    • 제21권1호
    • /
    • pp.103-118
    • /
    • 1995
  • This paper is concerned with developing flow control method for a dynamic multistage manufacturing system with interstage buffers and unreliable machines. For the effective control of proposed manufacturing system, the three-level hierarchical scheme is introduced. At the top level, we collect the system data and then, design the buffer sizes and hedging points. Short-term production rates are calculated at the middle level. At the bottom level, actual dispatching times are determined by Clear the Largest Buffer Level rule. The control method utilizes the material and the space in the buffers to alleviate the propagation of a failure to other machines in the system and keeps the production close to demand. Finally, a numerical example is provided to illustrate the mathematical control method developed and implemented in a dynamic manufacturing environment.

  • PDF

Power Flow Control of Grid-Connected Fuel Cell Distributed Generation Systems

  • Hajizadeh, Amin;Golkar, Masoud Aliakbar
    • Journal of Electrical Engineering and Technology
    • /
    • 제3권2호
    • /
    • pp.143-151
    • /
    • 2008
  • This paper presents the operation of Fuel Cell Distributed Generation(FCDG) systems in distribution systems. Hence, modeling, controller design, and simulation study of a Solid Oxide Fuel Cell(SOFC) distributed generation(DG) system are investigated. The physical model of the fuel cell stack and dynamic models of power conditioning units are described. Then, suitable control architecture based on fuzzy logic and the neural network for the overall system is presented in order to activate power control and power quality improvement. A MATLAB/Simulink simulation model is developed for the SOFC DG system by combining the individual component models and the controllers designed for the power conditioning units. Simulation results are given to show the overall system performance including active power control and voltage regulation capability of the distribution system.

Implementation of Wind Power System and Development of a Automatic Tail Safety Controller (풍력발전시스템의 강풍제어기 개발 및 시스템 구성)

  • Choi, Jung-Hoon;Moon, Chae-Joo;Jang, Yung-Hak;Lee, Hyun-Ju
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 한국조명전기설비학회 2004년도 춘계학술대회 논문집
    • /
    • pp.424-428
    • /
    • 2004
  • A wind turbine system converts wind energy into electric energy, the system operated under normal environmental conditions. In case of particular turbulent wind flow such as typhoon, hurricane etc, the control of a blade used to a yaw control and a pitch control method. A small wind turbine has not a speed control system to only a manual tail safety brake. This paper shows a automatic tail safety brake controller based on feedback control using wind velocity. The controller composed of wired motor, relay system, steel wired motor him down a perpendicular to wind flow and then the blade speed reduced high to zero. The operation of automatic tail safety controller verified by manual test.

  • PDF

Implementation & Application of Instrumentation System on Performance Evaluation for Korea-Radio Train Control System (통신기반 열차제어시스템 성능평가용 계측시스템 구현 및 적용)

  • Lee, Jae-Ho;Lee, Kang-Mi;Park, Pyoung-Sik
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • 제62권12호
    • /
    • pp.1777-1783
    • /
    • 2013
  • This study aims to implement an instrumentation system measuring and analysing real-time data of information flow between respective subunits composing train control system as the performance evaluation method for wireless communication based urban railway train control system under development for a Korean model. It analyses system functional requirements regarding subsystems composing wireless communication based train control system and test items for functions presented in each specification and examines data and measurement point for measuring according to test items in order to implement an instrumentation system. And, it clearly defines requirements of an instrumentation system to avoid malfunction or error in operation of train control system. It reviews data processing method and display method for effective analysis of data flow between respective subunits with measured data, designs and makes an instrumentation system. Ultimately, it applies to a performance test of train control system and makes sure an instrumentation system in normal working order.

Optimal Flow Control of Ceiling Type Indoor Unit by PIV Measurements (PIV 유동 계측을 통한 천장형 실내기의 최적 제어 설계)

  • Sung, Jae-Yong;An, Kwang-Hyup;Lee, Gi-Seop;Choi, Ho-Seon;Lee, In-Seop
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • 제27권8호
    • /
    • pp.1042-1050
    • /
    • 2003
  • A heating flow discharged from a 4-way ceiling type indoor unit has been investigated to determine the design parameters for the optimal flow control. The flow was measured by a PIV(particle image velocimetry) system and an experimental model of 1/10 scale with a transparent room was devised by satisfying the Archimedes number. This similarity is generally used in cases where the forced convection has similar magnitude of the natural convection. To optimize the heating flow, several vane angles and vane control algorithms of cross and right angle controls were considered. Regarding the vane angle, experimental results show that 30$^{\circ}$is an optimal angle to avoid re-suction flows without significant increase in flow noise. Temperature distribution measured in the environmental chamber ensures the increased thermal comfort when compared to the case, 60$^{\circ}$angle. At the optimal angle, applying open/close control gives rise to more uniform distribution of the heating flow than without control. Especially, the cross-control seems to be satisfactory for thermal comfort.

Separate Signature Monitoring for Control Flow Error Detection (제어흐름 에러 탐지를 위한 분리형 시그니처 모니터링 기법)

  • Choi, Kiho;Park, Daejin;Cho, Jeonghun
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • 제13권5호
    • /
    • pp.225-234
    • /
    • 2018
  • Control flow errors are caused by the vulnerability of memory and result in system failure. Signature-based control flow monitoring is a representative method for alleviating the problem. The method commonly consists of two routines; one routine is signature update and the other is signature verification. However, in the existing signature-based control flow monitoring, monitoring target application is tightly combined with the monitoring code, and the operation of monitoring in a single thread is the basic model. This makes the signature-based monitoring method difficult to expect performance improvement that can be taken in multi-thread and multi-core environments. In this paper, we propose a new signature-based control flow monitoring model that separates signature update and signature verification in thread level. The signature update is combined with application thread and signature verification runs on a separate monitor thread. In the proposed model, the application thread and the monitor thread are separated from each other, so that we can expect a performance improvement that can be taken in a multi-core and multi-thread environment.