• 제목/요약/키워드: Flow Aggregation

검색결과 175건 처리시간 0.04초

DK-MGAR101, an extract of adventitious roots of mountain ginseng, improves blood circulation by inhibiting endothelial cell injury, platelet aggregation, and thrombus formation

  • Seong, Hye Rim;Wang, Cuicui;Irfan, Muhammad;Kim, Young Eun;Jung, Gooyoung;Park, Sung Kyeong;Kim, Tae Myoung;Choi, Ehn-Kyoung;Rhee, Man Hee;Kim, Yun-Bae
    • Journal of Ginseng Research
    • /
    • 제46권5호
    • /
    • pp.683-689
    • /
    • 2022
  • Background: Since ginsenosides exert an anti-thrombotic activity, blood flow-improving effects of DK-MGAR101, an extract of mountain ginseng adventitious roots (MGAR) containing various ginsenosides, were investigated in comparison with an extract of Korean Red Ginseng (ERG). Methods: In Sprague-Dawley rats orally administered with DK-MGAR101 or ERG, oxidative carotid arterial thrombosis was induced with FeCl3 (35%), and their blood flow and occlusion time were measured. To elucidate underlying mechanisms, the cytoprotective activities on rat aortic endothelial cells (RAOECs) exposed to hydrogen peroxide (H2O2) were confirmed. In addition, the inhibitory activities of DK-MGAR101 and ERG on agonist-induced platelet aggregation, thromboxane B2 production, and ATP granule release from stimulated platelets as well as blood coagulation were analyzed. Results: DK-MGAR101 containing high concentrations of Rb1, Rg1, Rg3, Rg5, and Rk1 ginsenosides (55.07 mg/g) was more effective than ERG (ginsenosides 8.45 mg/g) in protecting RAOECs against H2O2 cytotoxicity. DK-MGAR101 was superior to ERG not only in suppressing platelet aggregation, thromboxane B2 production, and granule release, but also in delaying blood coagulation, FeCl3-induced arterial occlusion, and thrombus formation. Conclusions: The results indicate that DK-MGAR101 prevents blood vessel occlusion by suppressing platelet aggregation, thrombosis, and blood coagulation, in addition to endothelial cell injury.

DEM을 기반으로 한 흐름방향 모의기법에 따른 배수구조의 변동성 해석 (Analysis of Variation for Drainage Structure with Flow Direction Methods on the Basis of DEM)

  • 박혜숙;김주철
    • 한국물환경학회지
    • /
    • 제34권4호
    • /
    • pp.391-398
    • /
    • 2018
  • The main purpose of this study is to suggest and recommend the more reliable flow direction methods within the framework of DEM and power law distribution, by investigating the existing methodologies. To this end SFD (single flow direction method), MFD (multiple flow direction method) and IFD (Infinite flow direction method) are applied to analyze the determination of a flow direction for the water particles as seen in the Jeonjeokbigyo basin, and then assessed with respect to the variation of flow accumulation in that region. As the main results revealed, the study showed the different patterns of flow accumulation are found out from each applications of flow direction methods utilized in this study. This brings us to understand that as the flow dispersion on DEM increases, in this case the contributing areas to the outlet grow in sequence of SFD, IFD, MFD, but it is noted that the contribution of individual pixels into outlet decreases at that time. In what follows, especially with the MFD and IFD, the result tends to make additional hydrologic abstraction from rainfall excess, as noted due to the flow dispersion within flow paths on DEM. Based on the parameter estimation for a power law distribution, which is frequently used for identify the aggregation structure of complex system, by maximum likelihood flow accumulation can be thought of as a scale invariance factor. In this regard, the combination of flow direction methods could give rise to the more realistic water flow on DEM, as revealed through the separate flow direction methods as utilized for dispersion and aggregation effects of water flow within the available different topographies.

샘플링 검사가 수행되는 폐쇄형 생산 시스템의 성능분석 (Performance Evaluation of Closed Manufacturing Systems with Sampling Inspections)

  • 이효성
    • 한국경영과학회지
    • /
    • 제22권1호
    • /
    • pp.123-140
    • /
    • 1997
  • In this paper we consider closed flow line systems with samploing inspections. The total number of parts in the system is assumed to be N. The processings carried out of each station do not always meet the requirement of quality. Therefore, upon completion of its processing at each station, a part is inspected to determine whether the processings meet the requirement of quality or not. We assume that inspection are done on a random basis. If a part is found to be defective by an inspection, it is fed back to the apropriate station. Two different cases will be considered in this study : a three-station flow line system with infinite buffers and a two-station flow line system with finite buffers. For each case, we will develop an exact method to obtain the performance measures such as throughput, machinen utilization, average outgoing quality and manufacturing lead time. For the case of the two-station flow line system ith finite buffers, we will also develop an approximation method using a stage-aggregation technique. Then using buffers, we will also develop an approximation method using a stage-aggregation technique. Then using these results, we will try to find an optimal inspection policy which maximizes the expected net profit under a certain cost structure. Although we present the results only for the two or three station flow line system in this paper, the results obtained in this paper can be extended easily to the system which consists of more than two or three stations.

  • PDF

Optical Detection of Red Blood Cell Aggregation in a Disposable Microfluidic Channel

  • Shin Sehyun;Jang Ju-Hee;Park Myung-Soo;Ku Yunhee;Suh Jang-Soo
    • Journal of Mechanical Science and Technology
    • /
    • 제19권3호
    • /
    • pp.887-893
    • /
    • 2005
  • The aggregability of red blood cells (RBCs) was determined by laser backscattering light analysis in a microfluidic channel. Available techniques for RBC aggregation often adopt a rotational Couette-flow using a bob-and-cup system for disaggregating RBCs, which causes the system to be complex and expensive. A disposable microfluidic channel and vibration generating mechanism were used in the proposed new detection system for RBC aggregation. Prior to measurement, RBC aggregates in a blood sample were completely disaggregated by the application of vibration-induced shear. With the present apparatus, the aggregation indexes of RBCs can be measured easily with small quantities of a blood sample. The measurements with the present aggregometer were compared with those of LORCA and the results showed a strong correlation between them. The aggregability of the defibrinogenated blood RBCs is markedly lower than that of the normal RBCs. The noble feature of this design is the vibration-induced disaggregation mechanism, which can incorporate the disposable element that holds the blood sample.

Anti-platelet Activity of Tissue-cultured Mountain Ginseng Adventitious Roots in Human Whole Blood

  • Jeon, Won-Kyung;Yoo, Bo-Kyung;Kim, Yeong-Eun;Park, Sun-Ok;Hahn, Eun-Joo;Paek, Kee-Yoeup;Ko, Byoung-Seob
    • Food Science and Biotechnology
    • /
    • 제17권6호
    • /
    • pp.1197-1202
    • /
    • 2008
  • Present study investigated the effects of the 70% ethanol extracts of tissue-cultured mountain ginseng (TCMG), Korean red ginseng (KRG), and Panax ginseng (PG) on agonist-induced platelet aggregation and activation in human whole blood. The $IC_{50}$ values for TCMG, KRG, and PG were 1.159, 3.695, and 4.978mg/mL for collagen-induced aggregation, 0.820, 2.030, and 4.743mg/mL for arachidonic acid-induced aggregation, and 1.070, 2.617, and 2.954 mg/mL for ADP-induced aggregation, respectively. Also, this study assessed the effects of the most active extract, TCMG, on markers of platelet activation by determining receptor expression on platelet membranes in healthy subjects, including expression of GPIIb/IIIa-like (PAC-1) and P-selectin (CD62), by flow cytometry. A significant decrease in PAC-l expression (p=0.018) was observed in the presence of TCMG. These results show that TCMG has potent anti-platelet activity.

Hemorheology and Cardiovascular Disease

  • Cho, Young-I.;Kensey, Kenneth R.
    • 순환기질환의공학회:학술대회논문집
    • /
    • 순환기질환의공학회 2002년도 제2회 학술대회 초록집
    • /
    • pp.3-18
    • /
    • 2002
  • Hemorheology plays an important role in atherosclerosis. Hemorheologic properties of blood include whole blood viscosity, plasma viscosity, hemaocrit, RBC deformability and aggregation, and fibrinogen concentration in plasma. Blood flow is determine by three parameters (pressure, lumen diameter, and whole blood viscosity), whole blood viscosity is one of the key physiological variables. However, the significance of whole blood viscosity has not yet not been fully appreciated. Whole blood viscosity has a unique property, non-Newtonian shear-thinning characteristics, which is primarily due to the presence of RBCs. Hence, RBC deformability and aggregation directly affect the magnitude of blood viscosity, and any factors or diseases affecting RBC characteristics influence blood viscosity. Therefore, on can see that whole blood viscosity is the causal mechanism by which traditional risk factors such as hypertension, hyperlipidemia, smoking, exercise, obesity, age, and gender are related to atherogenesis. In this regard, we included whole blood viscosity in the three key determinants of injurious pulsatile flow that results in mechanical injury and protective adaptation in the arterial system. Because whole blood viscosity is a potential predictor of cardiovascular diseases, it should be measured in routine cardiovascular profiles. Incorporating whole blood viscosity measurements into a standard clinical protocol could improve our ability to identify patients at risk for cardiovascular disease and its complications.

  • PDF

Application of ANN to Load Modeling in Power System Analysis

  • Jaeyoon Lim;Lee, Jongpil;Pyeongshik Ji;A. Ozdemir;C. Singh
    • KIEE International Transactions on Power Engineering
    • /
    • 제2A권4호
    • /
    • pp.136-144
    • /
    • 2002
  • Load models are very important for improving the accuracy of stability analysis and load flow studies. Various loads are connected to a power bus and their characteristics of power consumption change with voltage and frequency. Thus, the effect of voltage/frequency changes must be considered in load modeling. In this work, artificial neural networks-ANNs- were used to construct the component load models for more accurate modeling. A typical residential load was selected and subjected to a test under variable voltage/frequency conditions. Acquired data were used to construct component models by ANNs. The aggregation process of separately determined load models is also presented in the paper. Furthermore, this paper proposes a method to transform a single load model constructed by the aggregation method into a mathematical load model that can be used in traditional power system analysis software.