• Title/Summary/Keyword: Flood analysis

Search Result 1,819, Processing Time 0.029 seconds

A Study on the Preparation of Contents for Promoting the Establishment of a Disaster Safety Village in Rural Areas (농촌지역 재난안전마을 만들기 활성화를 위한 컨텐츠 마련에 관한 연구)

  • Koo, Wonhoi;Bae, Minho
    • Journal of the Society of Disaster Information
    • /
    • v.14 no.4
    • /
    • pp.387-398
    • /
    • 2018
  • Purpose: The purpose of this study is to promote the disaster safety village establishment project that fits the characteristics of rural areas by investigating and analyzing the operation cases of contents with regard to disaster safety villages in Korea and Japan. Method: The contents of project related to disaster safety villages in Korea and Japan were classified into resident participation contents, structured contents and unstructured contents, for examining the characteristics of such contents through investigation and analysis, and the contents (draft) of disaster safety village that fitted the characteristics of rural areas were presented. Result: The contents of resident participation include basic safety education, CPR education, life experience training of evacuation shelter, evacuation training, concurrent training of farming activity and disaster activity and creating a village safety map in connection with competent authorities. The enactment of an act and an ordinance for the establishment of disaster safety village, expert dispatch system, storm and flood insurance system and funding system to raise the fund for establishing a village were presented as unstructured contents. In addition, the production of self supporting evacuation shelter, wireless evacuation announcement system, disaster prevention system for a river, emergency evacuation sign, village safety map sign and the establishment of disaster prevention park were presented as structured contents. Conclusion: The unstructured contents are the establishment of foundation for preparing laws and institutions and the structured contents should be installed by utilizing eco-friendly methods in consideration of the environments of rural areas along with securing the safety. Moreover, resident participation should utilize the contents by considering various items such as age, characteristics and environments of residents in rural villages.

Construction of a Sub-catchment Connected Nakdong-gang Flood Analysis System Using Distributed Model (분포형 모형을 이용한 소유역 연계 낙동강 홍수해석시스템 구축)

  • Choi, Yun-Seok;Won, Young-Jin;Kim, Kyung-Tak
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2018.05a
    • /
    • pp.202-202
    • /
    • 2018
  • 본 논문에서는 분포형 강우-유출 모형인 GRM(Grid based Rainfall-runoff Model)(최윤석, 김경탁, 2017)을 이용해서 낙동강 유역을 대상으로 대유역 홍수해석시스템을 구축하고, 유출해석을 위한 실행시간을 평가하였다. 유출모형은 낙동강의 주요 지류와 본류를 소유역으로 구분하여 모형을 구축하고, 각 소유역의 유출해석 결과를 실시간으로 연계할 수 있도록 하여 낙동강 전체 유역의 유출모형을 구축하였다. 이와 같이 하나의 대유역을 다수의 소유역시스템으로 분할하여 모형을 구축할 경우, 유출해석시스템 구성이 복잡해지는 단점이 있으나, 소유역별로 각기 다른 자료를 이용하여 다양한 해상도로 유출해석을 할 수 있으므로, 소유역별 특성에 맞는 유출모형 구축이 가능한 장점이 있다. 또한 각 소유역시스템은 별도의 프로세스로 계산이 진행되므로, 대유역을 고해상도로 해석하는 경우에도 계산시간을 단축할 수 있다. 본 연구에서는 낙동강 유역을 20개(본류 구간 3개, 1차 지류 13개, 댐상류 4개)의 소유역으로 분할하여 계산 시간을 검토하였으며, 최종적으로 21개(본류 구간 3개, 1차 지류 13개, 댐상류 5개)의 소유역으로 분할하여 유출해석시스템을 구축하였다. 댐 상류 유역은 댐하류와 유량전달이 없이 독립적으로 모의되고, 댐과 연결된 하류 유역은 관측 방류량을 상류단 하천의 경계조건으로 적용한다. 지류 유역은 본류 구간과 연결되고, 지류의 계산 유량은 본류와의 연결지점에 유량조건으로 실시간으로 입력된다. 이때 본류와 지류의 유량 연계는 데이터베이스를 매개로 하였다. 유출해석시스템의 성능을 평가하기 위해서 Microsoft 클라우드 서비스인 Azure를 이용하였다. 낙동강 유역을 20개 소유역으로 구성한 경우에서의 유출해석시스템의 속도 평가 결과 Azure virtual machine instance DS15 v2(OS : Windows Server 2012 R2, CPU : 2.4 GHz Intel $Xeon^{(R)}$ E5-2673 v3 20 cores)에서 1.5분이 소요 되었다. 계산시간 평가시 GRM은 'IsParallel=false' 옵션을 적용하였으며, 모의 기간은 24시간을 기준으로 하였다. 연구결과 분포형 모형을 이용한 대유역 유출해석시스템 구축이 가능했으며, 계산시간도 충분히 단축할 수 있었다. 또한 추가적인 CPU와 병렬계산을 적용할 경우, 계산시간은 더 단축될 수 있으며, 이러한 기법들은 분포형 모형을 이용한 대유역 유출해석시스템 구축시 유용하게 활용될 수 있을 것으로 판단된다.

  • PDF

Evaluation of hydrological applicability for rainfall estimation algorithms of dual-polarization radar (이중편파 레이더의 강우 추정 알고리즘별 수문학적 적용성 평가)

  • Lee, Myungjin;Lee, Choongke;Yoo, Younghoon;Kwak, Jaewon;Kim, Hung Soo
    • Journal of Korea Water Resources Association
    • /
    • v.54 no.1
    • /
    • pp.27-38
    • /
    • 2021
  • Recently, many studies have been conducted to use the radar rainfall in hydrology. However, in the case of weather radar, the beam is blocked due to the limitation of the observation such as mountain effect, which causes underestimation of the radar rainfall. In this study, the radar rainfall was estimated using the Hybrid Sacn Reflectivity (HSR) technique for hydrological use of weather radar and the runoff analysis was performed using the GRM model which is a distributed rainfall-runoff model. As a result of performing the radar rainfall correction and runoff simulation for 5 rainfall events, the accuracy of the dual-polarization radar rainfall using the HSR technique (Q_H_KDP) was the highest with an error within 15% of the ground rainfall. In addition, the result of runoff simulation using Q_H_KDP also showed an accuracy of R2 of 0.9 or more, NRMSE of 1.5 or less and NSE of 0.5 or more. From this study, we examined the application of the dual-polarization radar and this results can be useful for studies related to the hydrological application of dual-polarization radar rainfall in the future.

Analysis of Applicability of the Detention in Trunk Sewer for Reducing Urban Inundation (도시 내수침수 저감을 위한 간선저류지 적용성 분석)

  • Lee, Sung Ho;Kim, Jung Soo;Kim, Seo Jun
    • Ecology and Resilient Infrastructure
    • /
    • v.8 no.1
    • /
    • pp.44-53
    • /
    • 2021
  • The flood prevention capacity of drainage facilities in urban areas has weakened because of the increase in impervious surface areas downtown owing to rapid urbanization as well as localized heavy rains caused by climate change. Detention can be installed in trunk sewers and linked to existing drainage facilities for the efficient drainage of runoff in various urban areas with increasing stormwater discharge and changing runoff patterns. In this study, the concept of detention in trunk sewers, which are storage facilities linked to existing sewer pipes, was applied. By selecting a virtual watershed with a different watershed shape, the relationship between the characteristic factors of detention in the trunk sewer and the design parameters was analyzed. The effect of reducing stormwater runoff according to the installation location and capacity of the reservoir was examined. The relationship between the installation location and the capacity of the detention trunk sewer in the Dowon district of the city of Yeosu, South Korea was verified. The effects of the existing water runoff reduction facility and the detention trunk sewer were also compared and analyzed. As a result of analyzing the effects of reducing internal inundation, it was found that the inundation area decreased by approximately 66.5% depending on the installation location of the detention trunk sewer. The detention trunk sewer proposed in this paper could effectively reduce internal inundation in urban areas.

Evaluation of Flow Resistance Coefficient based on Physical Properties of Vegetation in Floodplains and Numerical Simulation of the Changes in Flow Characteristics (홍수터 식생의 물리적 특성을 고려한 흐름저항계수 산정 및 흐름특성 변화 모의)

  • Ji, Un;Jang, Eun-kyung;Ahn, Myeonghui;Bae, Inhyeok
    • Ecology and Resilient Infrastructure
    • /
    • v.8 no.4
    • /
    • pp.212-222
    • /
    • 2021
  • In this study, the flow resistance coefficient was calculated considering the physical properties and distribution characteristics of floodplain vegetation, and the effect of floodplain vegetation distribution on flow characteristics was analyzed by reflecting it in a two-dimensional numerical simulation. The three-dimensional point clouds of vegetation acquired using ground lidar were analyzed to apply floodplain vegetation's physical properties to the existing formula for vegetation flow resistance calculation. The floodplain vegetation distribution in the modeling was divided into locally distributed and fully distributed conditions in the floodplain. As a result of the simulation of the study site, the flow resistance coefficient of floodplain vegetation was found to have a value of about five times or more compared to the flow resistance coefficient of the main channel bed when the design flood occurs based on Manning's n coefficient. Also, it affected the hydraulic characteristics in the main channel and floodplain.

Flow duration change in downstream of reservoir by selective deficit supply method (선택적 부족분 공급방식에 따른 댐 하류하천의 유황 변화 분석)

  • Choi, Youngje;Park, Moonhyung
    • Journal of Korea Water Resources Association
    • /
    • v.55 no.12
    • /
    • pp.1021-1030
    • /
    • 2022
  • Currently, South Korea implements water resources management policies focusing on integrated water quantity, quality and hydro-ecology management. In particular, rehabilitation of natural rivers has become a major issue. As for reservoir operation during non-flood season, efforts have been made continuously to apply the Deficit Supply Method that can maximize water supply to address droughts and increase in water demand. When Deficit Supply Method is applied, the water supply capacity of reservoir can be maximized. However, downstream water flow would remain constant. In consideration that a natural stream, a long-time-created hydro-ecology, can be significantly influenced by flow variability, the Deficit Supply Method-based reservoir operation can generate effective water supply. Still, it may trigger adverse effects from the aspects of natural rehabilitation and hydro-ecology recovery. The main objective of this study is to analyze impacts on downstream flow duration through reservoir simulation by comparing the Firm Supply Method, the Deficit Supply Method and the Selective Deficit Supply Method, and examining each method's effects on reservoir operation. This study found that the Firm Supply Method could maintain water flow variability, but could not maximize water supply capacity. When the Deficit Supply Method was applied, water supply capacity could be increased while remaining vulnerable regarding water flow variability, as a difference between average flow and low flow was negligible at downstream. In comparison, the Selective Deficit Supply Method was found to sustain time-based reliability at 95% or higher, whereas downstream flow duration could be maintained at a level similar to the level generated by the Firm Supply Method.

Calculation of surface image velocity fields by analyzing spatio-temporal volumes with the fast Fourier transform (고속푸리에변환을 이용한 시공간 체적 표면유속 산정 기법 개발)

  • Yu, Kwonkyu;Liu, Binghao
    • Journal of Korea Water Resources Association
    • /
    • v.54 no.11
    • /
    • pp.933-942
    • /
    • 2021
  • The surface image velocimetry was developed to measure river flow velocity safely and effectively in flood season. There are a couple of methods in the surface image velocimetry. Among them the spatio-temporal image velocimetry is in the spotlight, since it can estimate mean velocity for a period of time. For the spatio-temporal image velocimetry analyzes a series of images all at once, it can reduce analyzing time so much. It, however, has a little drawback to find out the main flow direction. If the direction of spatio-temporal image does not coincide to the main flow direction, it may cause singnificant error in velocity. The present study aims to propose a new method to find out the main flow direction by using a fast Fourier transform(FFT) to a spatio-temporal (image) volume, which were constructed by accumulating the river surface images along the time direction. The method consists of two steps; the first step for finding main flow direction in space image and the second step for calculating the velocity magnitude in main flow direction in spatio-temporal image. In the first step a time-accumulated image was made from the spatio-temporal volume along the time direction. We analyzed this time-accumulated image by using FFT and figured out the main flow direction from the transformed image. Then a spatio-temporal image in main flow direction was extracted from the spatio-temporal volume. Once again, the spatio-temporal image was analyzed by FFT and velocity magnitudes were calculated from the transformed image. The proposed method was applied to a series of artificial images for error analysis. It was shown that the proposed method could analyze two-dimensional flow field with fairly good accuracy.

Analysis for flood reduction by rain storage tank (빗물저류조 설치에 의한 침수저감 분석)

  • Seung Wook Lee;Seung Jin Maeng;Da Ye Kim;In Seong Park
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2023.05a
    • /
    • pp.356-356
    • /
    • 2023
  • 충청북도 청주시 상당구 월오동 251-7번지와 251-15번지 2곳에 각각 50m3 규모의 빗물저류조를 대상으로 2017년 7월 16일 호우사상을 적용하여 설치 전·후의 침수저감 효과를 분석하였다. 침수분석을 위해 지형자료는 국토정보플랫폼에 있는 1:25,000 자료를 활용하였으며, 모의 전 대상지역의 관망구축에 따른 지형자료를 구축하였고 관망은 노드 40개와 링크 39개로 구성하였다. SWMM 모형을 구동하여 유역내 유출량을 분석하기 위해 유역과 관련한 입력자료와 이외 유역간의 연결부인 관거 하도 입력자료 구축 및 하도와 하도를 연결하는 모델상의 Junction인 실제 맨홀과 관련한 입력자료를 구축하였다. 관거 입력자료로는 관거의 제원, 길이, 깊이 등의 자료를 수집하여 사용하였다. 빗물저류조 설치전·후의 침수저감효과를 분석하기 위해 빗물저류조 설치전의 침수양상을 모의 하였으며 각각 강우발생 후 30분, 50분, 70분, 90분, 110분, 130분 및 150분으로 구분하여 분석하였다. 강우발생 후 150분의 모의분석 결과, 침수심은 0.2<깊이<0.4의 면적이 600m2로 가장 넓은 침수분포를 나타내었으며, 총 침수면적은 2,225m2로 모의되었다. 이는 강우발생 후130분 보다 125m2 더 침수되었으며, 0.8<깊이<1.0의 면적은 150m2로 모의되었다. 전체적인 침수심도 커진 것으로 분석되었다. 빗물저류조 설치 후의 침수양상을 모의하였으며 각각 강우발생 후 30분, 50분, 70분, 90분, 110분, 130분 및 150분으로 분석하였다. 강우발생 후 150분의 모의분석 결과, 침수심은 0.2<깊이<0.4의 면적이 250m2로 가장 많은 침수분포가 나타났으며, 총 침수면적은 550m2으로 모의 되었다. 이는 강우발생 후 110분과 침수면적은 동일하게 모의 되었으며, 침수심 0.2<깊이<0.4의 면적은 250m2로 모의 되었다. 따라서 해당 지역에 50m3 규모의 빗물저류조 2개를설치 할 경우 침수피해가 저감되는 것으로 분석되었다. 이러한 분석 결과를 바탕으로 향후 도시내 상습침수구역에 빗물저류조를 설치하여 기후변화에 따른 극한 강우에 대비할 수 있도록 해야 할 것이다.

  • PDF

Estimation of the Reach-average Velocity of Mountain Streams Using Dye Tracing (염료추적자법을 이용한 산지하천의 구간 평균 유속 추정)

  • Tae-Hyun Kim;Jeman Lee;Chulwon Lee;Sangjun Im
    • Journal of Korean Society of Forest Science
    • /
    • v.112 no.3
    • /
    • pp.374-381
    • /
    • 2023
  • The travel time of flash floods along mountain streams is mainly governed by reach-average velocity, rather than by the point velocity of the locations of interest. Reach-average velocity is influenced by various factors such as stream geometry, streambed materials, and the hydraulic roughness of streams. In this study, the reach-average velocity in mountain streams was measured for storm periods using rhodamine dye tracing. The point cloud data obtained from a LiDAR survey was used to extract the average hydraulic roughness height, such as Ra, Rmax, and Rz. The size distribution of the streambed materials (D50, D84) was also considered in the estimation of the roughness height. The field experiments revealed that the reach-average velocities had a significant relationship with flow discharges (v = 0.5499Q0.6165 ), with an R2 value of 0.77. The root mean square error in the roughness height of the Ra-based estimation (0.45) was lower than those of the other estimations (0.47-1.04). Among the parameters for roughness height estimation, the Ra -based roughness height was the most reliable and suitable for developing the reach-average velocity equation for estimating the travel time of flood waves in mountain streams.

Analysis of Tree Roughness Evaluation Methods Considering Depth-Dependent Roughness Coefficient Variation (수심별 조도계수 변화를 고려한 수목 조도공식 특성 분석)

  • Du Han Lee;Dong Sop Rhee
    • Ecology and Resilient Infrastructure
    • /
    • v.10 no.3
    • /
    • pp.51-63
    • /
    • 2023
  • Riverine tree management is crucial in realizing a balance between flood control and ecological preservation, which requires an accurate assessment of the impact of trees on river water elevations. In this study, eight different formulas for evaluating vegetation roughness considering the drag force acting on trees, were reviewed, and the characteristics and applicability of these methods were evaluated from a practical engineering perspective. The study compared the characteristics of vegetation roughness measurement methods for calculated roughness coefficients at different water depths and analyzed factors such as effects of tree canopy width, tree density and diameter, and tree stiffness coefficient, and water level estimation results. A comparison of roughness coefficients at the same water depths revealed that the Kouwen and Fathi-Moghadam formulas and the Fischenich formula yield excessive drag coefficients compared to other formulas. Factors such as channel geometry, tree diameter, and tree density showed varying trends depending on the formula but did not exhibit excessive outliers. Formulas considering the tree stiffness coefficient, such as the Freeman et al.'s formula and the Whittaker et al.'s formula, showed significant variations in drag coefficients depending on the stiffness coefficient. When applied to small- and medium-sized virtual rivers in South Korea using the drag coefficient results from the eight formulas, the results indicated a maximum increase in water level of approximately 0.2 to 0.4 meters. Based on this review, it was concluded that the Baptist et al., Huthoff et al., Cheng, Luhar, and Nepf's formulas, which exhibit similar characteristics and low input data uncertainties, are suitable for practical engineering applications.