DOI QR코드

DOI QR Code

Analysis of Tree Roughness Evaluation Methods Considering Depth-Dependent Roughness Coefficient Variation

수심별 조도계수 변화를 고려한 수목 조도공식 특성 분석

  • Du Han Lee (Department of Hydro Science and Engineering Research, Korea Institute of Civil Engineering and Building Technology) ;
  • Dong Sop Rhee (Department of Hydro Science and Engineering Research, Korea Institute of Civil Engineering and Building Technology)
  • 이두한 (한국건설기술연구원 수자원하천연구본부) ;
  • 이동섭 (한국건설기술연구원 수자원하천연구본부)
  • Received : 2023.09.11
  • Accepted : 2023.09.21
  • Published : 2023.09.30

Abstract

Riverine tree management is crucial in realizing a balance between flood control and ecological preservation, which requires an accurate assessment of the impact of trees on river water elevations. In this study, eight different formulas for evaluating vegetation roughness considering the drag force acting on trees, were reviewed, and the characteristics and applicability of these methods were evaluated from a practical engineering perspective. The study compared the characteristics of vegetation roughness measurement methods for calculated roughness coefficients at different water depths and analyzed factors such as effects of tree canopy width, tree density and diameter, and tree stiffness coefficient, and water level estimation results. A comparison of roughness coefficients at the same water depths revealed that the Kouwen and Fathi-Moghadam formulas and the Fischenich formula yield excessive drag coefficients compared to other formulas. Factors such as channel geometry, tree diameter, and tree density showed varying trends depending on the formula but did not exhibit excessive outliers. Formulas considering the tree stiffness coefficient, such as the Freeman et al.'s formula and the Whittaker et al.'s formula, showed significant variations in drag coefficients depending on the stiffness coefficient. When applied to small- and medium-sized virtual rivers in South Korea using the drag coefficient results from the eight formulas, the results indicated a maximum increase in water level of approximately 0.2 to 0.4 meters. Based on this review, it was concluded that the Baptist et al., Huthoff et al., Cheng, Luhar, and Nepf's formulas, which exhibit similar characteristics and low input data uncertainties, are suitable for practical engineering applications.

하천내 수목관리는 홍수와 생태 관리의 균형점을 찾는다는 점에서 매우 중요하며 이를 위해서는 수목이 하천 수위에 미치는 영향을 정확하게 평가할 필요가 있다. 본 연구에서 수목에 작용하는 항력을 고려하는 수목조도공식 8개에 대해 검토하여 실무 수리계산의 관점에서 수목 조도계수 공식의 특성과 적용성을 평가하였다. 개별 수목 조도계수 공식의 수심별 조도계수 산정 특성을 비교하고, 수관부 영향, 수목밀도와 직경 영향, 수목 강성계수 영향, 수위 산정 결과 등을 분석하였다. 동일 조건 수심별 조도계수 비교를 통해 Kouwen and Fathi-Moghadam 공식과 Fischenich 공식은 타 공식에 비해 과도한 조도계수를 산정하였다. 수관부, 수목 직경, 수목 밀도 등은 공식에 따라 상이한 경향을 나타내나 과도한 특이점은 없는 것으로 나타났다. 수목 강성계수를 고려하는 Freeman et al. 공식과 Whittaker et al. 공식은 강성계수에 따라 조도계수가 매우 큰 차이를 나타낸다. 8개 공식의 조도계수 산정 결과를 이용하여 국내 중소규모 가상 하천에 적용한 결과 최대 약 0.2 - 0.4 m 정도의 수위 상승효과를 나타내고 있다. 이상의 검토를 통해 유사한 특성을 가지며 입력자료의 불확실성이 낮은 Baptist et al., Huthoff et al., Cheng, Luhar and Nepf 등의 4개 공식이 실무 적용에 적합한 것으로 판단하였다.

Keywords

Acknowledgement

본 연구는 환경부 학술연구용역 '하천에서 나무심기 및 공작물 설치 등 관리개선방안연구'의 일환으로 수행되었음.

References

  1. Abu-Aly, T., Pasternack, G., Wyrick, J., Barker, R., Massa, D., and Johnson, T. 2014. Effects of LiDAR-derived, spatially distributed vegetation roughness on two-dimensional hydraulics in a gravel-cobble river at flows of 0.2 to 20 times bankfull. Geomorphology 206: 468-482. https://doi.org/10.1016/j.geomorph.2013.10.017
  2. Baptist, M.J. 2005. Modelling floodplain biogeomorphology. PhD thesis, Delft University of Technology, Faculty of Civil Engineering and Geosciences, Section Hydraulic Engineering, Delft.
  3. Baptist, M.J., Babovic, V., Rodriguez, J., Keijzer, M., Uittenbogaard, R., Mynett, A., and Verwey, A., 2007. On inducing equations for vegetation resistance. J. Hydraul. Res. 45(4): 435-450. https://doi.org/10.1080/00221686.2007.9521778
  4. Casas, A., Lane, S.N., Yu, D., and Benito, G., 2010. A method for parameterising roughness and topographic sub-grid scale effects in hydraulic modelling from LiDAR data. Hydrol. Earth Syst. Sci. 14(8): 1567-1579. https://doi.org/10.5194/hess-14-1567-2010
  5. Cheng, N.S. 2011. Representative roughness height of submerged vegetation. Water Resour. Res. 47(8): W08517.
  6. Chow, V.T. 1959. Open channel hydraulics. New York: McGraw-Hill.
  7. Dombroski, D. and Greimann, B.P. 2014. A deterministic spatially distributed ecohydraulic model for lmproved riverine system management. Technical Rep. No. SRH-2014-26. Denver: Bureau of Reclamation, Technical Service Genter, Sedimentation and River Hydraulics Group.
  8. Fischenich, J.C. 2000. Resistance due to Vegetation. ERDC TN-EMRRP-SR-07, U.S. Army Engineer Research and Development Center, Vicksburg, Mississippi.
  9. Freeman, G.E., Rahmeyer, W.J., and Copeland, R.R. 2000. Determination of resistance due to shrubs and woody vegetation. ERDC/CHL TR-00-25. Vicksburg, MS: US Army Corps of Engineers Research and Development Center.
  10. Gillihan, T. 2013. Dynamic vegetation roughness in the riparian zone. M.Sc. thesis, Dept. of Civil Engineering, Univ. of New Mexico.
  11. Huthoff, F., Augustijn, D., and Hulscher, S.J. 2007. Analytical solution of the depth-averaged flow velocity in case of submerged rigid cylindrical vegetation. Water Resour. Res. 43(6): W06413.
  12. Jalonen, J., J̈arvel̈a, J., and Aberle, J., 2013. Leaf area index as vegetation density measure for hydraulic analyses. J. Hydraul. Eng. 139(5): 461-469. https://doi.org/10.1061/(ASCE)HY.1943-7900.0000700
  13. Jarvela, J. 2004. Determination of flow resistance caused by nonsubmerged woody vegetation. Int. J. River Basin Manage. 2(1):61-70. https://doi.org/10.1080/15715124.2004.9635222
  14. Ji, U., Jang, E., Ahn, M., and Bae, I. 2021. Evaluation of Flow Resistance Coefficient based on Physical Properties of Vegetation in Floodplains and Numerical Simulation of the Changes in Flow Characteristics. Ecology and Resilient Infrastructure 8(4): 212-222. https://doi.org/10.17820/ERI.2021.8.4.212
  15. Kouwen, N. and Fathi-Moghadam, M. 2000. Friction factors for coniferous trees along rivers. J. Hydraul. Eng. 126(10): 732-740. https://doi.org/10.1061/(ASCE)0733-9429(2000)126:10(732)
  16. Kouwen, N. and Li, R.M. 1980. Biomechanics of vegetative channel linings. J. Hydraul. Div. 106(6): 1085-1103. https://doi.org/10.1061/JYCEAJ.0005444
  17. Luhar, M. and Nepf, H.M. 2013. From the blade scale to the reach scale: A characterization of aquatic vegetative drag. Adv. Water Resour. 51: 305-316. https://doi.org/10.1016/j.advwatres.2012.02.002
  18. Manning, R., 1895. On the flow of Water in Open Channels and Pipes. Transactions Institute of Civil Engineers of Ireland 20: 161-209.
  19. Palmer, V.J. 1945. A method for designing vegetated waterways. Agric. Eng. 26(12): 516-520.
  20. Ree, W. 1954. Handbook of channel design for soil and water conservation: Soil conservation service. Washington, DC: USDA.
  21. Verschoren, V., Meire, D., Schoelynck, J., Buis, K., Bal, K.D., Troch, P., Meire, P., and Temmerman, S., 2016. Resistance and reconfiguration of natural flexible submerged vegetation in hydrodynamic river modelling. Environ. Fluid Mech. 16(1): 245-265. https://doi.org/10.1007/s10652-015-9432-1
  22. Wang, J. and Zhang, Z. 2019. Evaluating Riparian Vegetation Roughness Computation Methods Integrated within HEC-RAS. Journal of Hydraulic Engineering 145(6).
  23. Whittaker, P., Wilson, C.A., and Aberle, J. 2015. An improved Cauchy number approach for predicting the drag and reconfiguration of flexible vegetation. Adv. Water Resour. 83: 28-35. https://doi.org/10.1016/j.advwatres.2015.05.005