Browse > Article
http://dx.doi.org/10.3741/JKWRA.2021.54.1.27

Evaluation of hydrological applicability for rainfall estimation algorithms of dual-polarization radar  

Lee, Myungjin (Department of Civil Engineering, Inha University)
Lee, Choongke (Korea Meteorological Institute)
Yoo, Younghoon (Department of Civil Engineering, Inha University)
Kwak, Jaewon (Han River Flood Control Office)
Kim, Hung Soo (Department of Civil Engineering, Inha University)
Publication Information
Journal of Korea Water Resources Association / v.54, no.1, 2021 , pp. 27-38 More about this Journal
Abstract
Recently, many studies have been conducted to use the radar rainfall in hydrology. However, in the case of weather radar, the beam is blocked due to the limitation of the observation such as mountain effect, which causes underestimation of the radar rainfall. In this study, the radar rainfall was estimated using the Hybrid Sacn Reflectivity (HSR) technique for hydrological use of weather radar and the runoff analysis was performed using the GRM model which is a distributed rainfall-runoff model. As a result of performing the radar rainfall correction and runoff simulation for 5 rainfall events, the accuracy of the dual-polarization radar rainfall using the HSR technique (Q_H_KDP) was the highest with an error within 15% of the ground rainfall. In addition, the result of runoff simulation using Q_H_KDP also showed an accuracy of R2 of 0.9 or more, NRMSE of 1.5 or less and NSE of 0.5 or more. From this study, we examined the application of the dual-polarization radar and this results can be useful for studies related to the hydrological application of dual-polarization radar rainfall in the future.
Keywords
Dual-Polarization Radar; HSR Method; GRM Model; Rainfall-Runoff;
Citations & Related Records
Times Cited By KSCI : 7  (Citation Analysis)
연도 인용수 순위
1 Ahn, S.R., Jang, C.H., Kim, S.H., Han, M.S., Kim, J.H., and Kim, S.J. (2013). "Discussion for the effectiveness of radar data through distributed storm runoff modeling." Journal of the Korean Society of Agricultural Engineers, Vol. 55, No.6, pp. 19-30.   DOI
2 Ahn, S.R., Jung, C.G., and Kim, S.J. (2015). "A study on the effectiveness of radar rainfall by comparing with flood inundation record map using KIMSTORM (Grid-based kinematic wave storm runoff model)." Journal of Korea Water Resources Association, Vol. 48, No. 11, pp. 925-936.   DOI
3 Choi, C.K., Choi, Y.S., and Kim, K.T. (2012). "Application of a distributed model for evaluating the effect of sacheonman spillway on the flood reduction in the downstream of Namgang Dam." Journal of Wetlands Research, Vol. 14, No.3, pp. 399-411.   DOI
4 Choi, Y.S., Choi, C.K., Kim, H.S., Kim, K.T., and Kim, S. (2015). "Multi‐site calibration using a grid‐based event rainfall-runoff model: A case study of the upstream areas of the Nakdong River basin in Korea." Hydrological Processes, Vol. 29, No. 9, pp. 2089-2099.   DOI
5 Choi, Y.S., Choi, C.K., and Kim, K.T. (2012). "Development of a multi-site calibration module of distributed model-the case of GRM." Journal of the Korean Association of Geographic Information Studies, Vol. 15, No. 3, pp. 103-118.   DOI
6 Choi, Y.S., Kim, K.T., and Shim, M.P. (2010). "Discharge estimation at ungauged catchment using distributed rainfall-runoff model." Journal of Korea Water Resources Association, Vol. 43, No. 4, pp. 353-365.   DOI
7 Codo, M., and Rico-Ramirez, M.A. (2018). "Ensemble radar-based rainfall forecasts for urban hydrological applications." Geosciences, Vol. 8, No. 8, p. 297.   DOI
8 Crum, T.D., and Alberty, R.L. (1993). "The WSR-88D and the WSR-88D operational support facility." Bulletin of the American Meteorological Society, Vol. 74, pp. 1669-1687.   DOI
9 Dai, Q., Rico‐Ramirez, M.A., Han, D., Islam, T., and Liguori, S. (2015). "Probabilistic radar rainfall nowcasts using empirical and theoretical uncertainty models." Hydrological Processes, Vol. 29, No. 1, pp. 66-79.   DOI
10 Delrieu, G., Braud, I., Berne, A., Borga, M., Boudevillain, B., Fabry, F., Freer, J., Gaume, E., Nakakita, E., Seed, A., Tabary, P., and Uijlenhoet, R. (2009). "Weather radar and hydrology." Advances in Water Resources, Vol. 32, No. 7, pp. 969-974.   DOI
11 Jung, C.G., Kim, S.J., Lee, Y.G., Lee, D.Y., and Kim, S.H. (2017). "The applicability of KIMSTORM2 for flood simulation using conditional merging method and radar rain data." Journal of the Korean Society of Hazard Mitigation, Vo. 17, No. 6, pp.483-494.   DOI
12 Kang, N.R., Noh, H.S., Lee, J.S., Lim, S.H., and Kim, H.S. (2013). "Runoff simulation of an urban drainage system using radar rainfall data." Journal of Wetlands Research, Vol. 15, No. 3, pp. 413-422.   DOI
13 Kavetski, D., Binning, P., and Sloan, S.W. (2002). "Adaptive backward Euler time stepping with truncation error control for numerical modelling of unsaturated fluid flow." International Journal for Numerical Methods in Engineering, Vol. 53, No.6, pp. 1301-1322.   DOI
14 Kim, T.J., Lee, D.R., Jang, S.M., and Kwon, H.H. (2017). "Generation of radar rainfall data for hydrological and meteorological application (I): Bias correction and estimation of error distribution." Journal of Korea Water Resources Association, Vo. 50, No. 1, pp. 1-15.   DOI
15 Korea Institute of Civil engineering and building Technology (KICT) (2018). Grid based rainfall-runoff model user's manual.
16 Kwon, S., Jung, S.H., and Lee, G. (2015). "Inter-comparison of radar rainfall rate using constant altitude plan position indicator and hybrid surface rainfall maps." Journal of Hydrology, Vol. 531, pp. 234-247.   DOI
17 Na, W., and Yoo, C. (2020). "Real-time bias correction of Beaslesan dual-pol radar rain rate using the dual Kalman filter." Journal of Korea Water Resources Association, Vol. 53, No. 3, pp. 201-214.   DOI
18 Lee, J.K., Lee, M.H., Suk, M.K., and Park, H.S. (2014). "Application of the radar rainfall estimates using the hybrid scan reflectivity technique to the hydrologic model." Journal of Korea Water Resources Association, Vol. 47, No. 10, pp. 867-878.   DOI
19 Lee, M., Kang, N., Kim, J., and Kim, H.S. (2018). "Estimation of optimal runoff hydrograph using radar rainfall ensemble and blending technique of rainfall-runoff models." Journal of Korea Water Resources Association, Vol. 51, No. 3, pp. 221-233.   DOI
20 Maddox, R.A., Zhang, J., Gourley, J.J., and Howard, K.W. (2002). "Weather radar coverage over the contiguous United States." Weather and Forecasting, Vol. 17, No. 4, pp. 927-934.   DOI
21 Noh, H., Lee, D., Hwang, S., and Kang, N. (2019). "Evaluation of the uncertainty level in radar-rainfall technology in Korea: Focus on comparative analysis with the United States." Journal of the Korean Society of Hazard Mitigation, Vol. 19, No.1, pp. 35-44.   DOI
22 Ozkaya, A., and Akyurek, Z. (2019). "Evaluating the use of biascorrected radar rainfall data in three flood events in Samsun, Turkey." Natural Hazards, Vol. 98, No. 2, pp. 643-674.   DOI
23 Sebastianelli, S., Russo, F., Napolitano, F., and Baldini, L. (2010). "Comparison between radar and rain gauges data at different distances from radar and correlation existing between the rainfall values in the adjacent pixels." Hydrology And Earth System Sciences Discussions, Vol. 7, No. 4, pp. 5171-5212.   DOI
24 Shin, M.J., and Choi, Y.S. (2018). "Sensitivity analysis to investigate the reliability of the grid-based rainfall-runoff model." Water, Vol. 10, No.12, p. 1839.   DOI
25 Zhang, J., Howard, K., Langston, C., Vasiloff, S., Kaney, B., Arthur, A., Cooten, V.C., Kelleher, K., Kitzmiller, D., Ding, F., Seo, D.-J., Wells, E., and Dempsey, C. (2011). "National mosaic and multi-sensor QPE (NMQ) system: Description, results, and future plans." Bulletin of the American Meteorological Society, Vol. 92, pp.1321-1338.   DOI
26 Weather Radar Center (WRC) (2013). Development of application of cross governmental dual-pol radar harmonization[1]. Korea Meteorological Administration.