• Title/Summary/Keyword: Floating-point

Search Result 494, Processing Time 0.038 seconds

Highly Efficient and Precise DOA Estimation Algorithm

  • Yang, Xiaobo
    • Journal of Information Processing Systems
    • /
    • v.18 no.3
    • /
    • pp.293-301
    • /
    • 2022
  • Direction of arrival (DOA) estimation of space signals is a basic problem in array signal processing. DOA estimation based on the multiple signal classification (MUSIC) algorithm can theoretically overcome the Rayleigh limit and achieve super resolution. However, owing to its inadequate real-time performance and accuracy in practical engineering applications, its applications are limited. To address this problem, in this study, a DOA estimation algorithm with high parallelism and precision based on an analysis of the characteristics of complex matrix eigenvalue decomposition and the coordinate rotation digital computer (CORDIC) algorithm is proposed. For parallel and single precision, floating-point numbers are used to construct an orthogonal identity matrix. Thus, the efficiency and accuracy of the algorithm are guaranteed. Furthermore, the accuracy and computation of the fixed-point algorithm, double-precision floating-point algorithm, and proposed algorithm are compared. Without increasing complexity, the proposed algorithm can achieve remarkably higher accuracy and efficiency than the fixed-point algorithm and double-precision floating-point calculations, respectively.

Genetic Algorithm Using-Floating Point Representation for Steiner Tree (스타이너 트리를 구하기 위한 부동소수점 표현을 이용한 유전자 알고리즘)

  • 김채주;성길영;우종호
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.8 no.5
    • /
    • pp.1089-1095
    • /
    • 2004
  • The genetic algorithms have been used to take a near optimal solution because The generation of the optimal Steiner tree from a given network is NP-hard problem,. The chromosomes in genetic algorithm are represented with the floating point representation instead of the existing binary string for solving this problem. A spanning tree was obtained from a given network using Prim's algorithm. Then, the new Steiner point was computed using genetic algorithm with the chromosomes in the floating point representation, and it was added to the tree for approaching the result. After repeating these evolving steps, the near optimal Steiner tree was obtained. Using this method, the tree is quickly and exactly approached to the near optimal Steiner tree compared with the existing genetic algorithms using binary string.

Optimization of Link-level Performance and Complexity for the Floating-point and Fixed-point Designs of IEEE 802.16e OFDMA/TDD Mobile Modem (IEEE 802.16e OFDMA/TDD 이동국 모뎀의 링크 성능과 복잡도 최적화를 위한 부동 및 고정 소수점 설계)

  • Sun, Tae-Hyoung;Kang, Seung-Won;Kim, Kyu-Hyun;Chang, Kyung-Hi
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.43 no.11 s.353
    • /
    • pp.95-117
    • /
    • 2006
  • In this paper, we describe the optimization of the link-level performance and the complexity of floating-point and fixed-point methods in IEEE 802.16e OFDMA/TDD mobile modem. In floating-point design, we propose the channel estimation methods for downlink traffic channel and select the optimized method using computer simulation. So we also propose efficent algorithms for time and frequency synchronization, Digital Front End and CINR estimation scheme to optimize the system performance. Furthermore, we describe fixed-point method of uplink traffic and control channels. The superiority of the proposed algorithm is validated using the performances of Detection, False Alarm, Missing Probability and Mean Acquisition Time, PER Curve, etc. For fixed-point design, we propose an efficient methodology for optimized fixed-point design from floating-point At last, we design fixed-point of traffic channel, time and frequency synchronization, DFE block in uplink and downlink. The tradeoff between performance and complexity are optimized through computer simulations.

Automatic Floating-Point to Fixed-Point Conversion for Speech Recognition in Embedded Device (임베디드 디바이스에서 음성 인식 알고리듬 구현을 위한 부동 소수점 연산의 고정 소수점 연산 변환 기법)

  • Yun, Sung-Rack;Yoo, Chang-D.
    • Proceedings of the IEEK Conference
    • /
    • 2007.07a
    • /
    • pp.305-306
    • /
    • 2007
  • This paper proposes an automatic conversion method from floating-point value computations to fixed-point value computations for implementing automatic speech recognition (ASR) algorithms in embedded device.

  • PDF

Fast Algorithms for Computing Floating-Point Reciprocal Cube Root Functions

  • Leonid Moroz;Volodymyr Samotyy;Cezary Walczyk
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.6
    • /
    • pp.84-90
    • /
    • 2023
  • In this article the problem of computing floating-point reciprocal cube root functions is considered. Our new algorithms for this task decrease the number of arithmetic operations used for computing $1/{\sqrt[3]{x}}$. A new approach for selection of magic constants is presented in order to minimize the computation time for reciprocal cube roots of arguments with movable decimal point. The underlying theory enables partitioning of the base argument range x∈[1,8) into 3 segments, what in turn increases accuracy of initial function approximation and decreases the number of iterations to one. Three best algorithms were implemented and carefully tested on 32-bit microcontroller with ARM core. Their custom C implementations were favourable compared with the algorithm based on cbrtf(x) function taken from C <math.h> library on three different hardware platforms. As a result, the new fast approximation algorithm for the function $1/{\sqrt[3]{x}}$ was determined that outperforms all other algorithms in terms of computation time and cycle count.

A Rule-based Optimal Placement of Scaling Shifts in Floating-point to Fixed-point Conversion for a Fixed-point Processor

  • Park, Sang-Hyun;Cho, Doo-San;Kim, Tae-Song;Paek, Yun-Heung
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.6 no.4
    • /
    • pp.234-239
    • /
    • 2006
  • In the past decade, several tools have been developed to automate the floating-point to fixed-point conversion for DSP systems. In the conversion process, a number of scaling shifts are introduced, and they inevitably alter the original code sequence. Recently, we have observed that a compiler can often be adversely affected by this alteration, and consequently fails to generate efficient machine code for its target processor. In this paper, we present an optimization technique that safely migrates scaling shifts to other places within the code so that the compiler can produce better-quality code. We consider our technique to be safe in that it does not introduce new overflows, yet preserving the original SQNR. The experiments on a commercial fixed-point DSP processor exhibit that our technique is effective enough to achieve tangible improvement on code size and speed for a set of benchmarks.

The Design of Geometry Processor for 3D Graphics (3차원 그래픽을 위한 Geometry 프로세서의 설계)

  • Jeong, Cheol-Ho;Park, Woo-Chan;Kim, Shin-Dug;Han, Tack-Don
    • The Transactions of the Korea Information Processing Society
    • /
    • v.7 no.1
    • /
    • pp.252-265
    • /
    • 2000
  • In this thesis, the analysis of data processing method and the amount of computation in the whole geometry processing is conducted step by step. Floating-point ALU design is based on the characteristics of geometry processing operation. The performance of the devised ALU fitting with the geometry processing operation is analyzed by simulation after the description of the proposed ALU and geometry processor. The ALU designed in the paper can perform three types of floating-point operation simultaneously-addition/subtraction, multiplication, division. As a result, the 23.5% of improvement is achieved by that floating-point ALU for the whole geometry processing and in the floating-point division and square root operation, there is another 23% of performance gain with adding area-performance efficient SRT divisor.

  • PDF

Energy Efficient Architecture Using Hardware Acceleration for Software Defined Radio Components

  • Liu, Chen;Granados, Omar;Duarte, Rolando;Andrian, Jean
    • Journal of Information Processing Systems
    • /
    • v.8 no.1
    • /
    • pp.133-144
    • /
    • 2012
  • In order to make cognitive radio systems a practical technology to be deployed in real-world scenarios, the core Software Defined Radio (SDR) systems must meet the stringent requirements of the target application, especially in terms of performance and energy consumption for mobile platforms. In this paper we present a feasibility study of hardware acceleration as an energy-efficient implementation for SDR. We identified the amplifier function from the Software Communication Architecture (SCA) for hardware acceleration since it is one of the functions called for most frequently and it requires intensive floating-point computation. Then, we used the Virtex5 Field-Programmable Gate Array (FPGA) to perform a comparison between compiler floating-point support and the on-chip floating-point support. By enabling the on-chip floating-point unit (FPU), we obtained as high as a 2X speedup and 50% of the overall energy reduction. We achieved this with an increase of the power consumption by no more than 0.68%. This demonstrates the feasibility of the proposed approach.

High Precision Logarithm Converters for Binary Floating Point Approximation Operations (고속 부동소수점 근사연산용 로그변환 회로)

  • Moon, Sang-Ook
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2010.05a
    • /
    • pp.809-811
    • /
    • 2010
  • In most floating-point operations related with 3D graphic applications for mobile devices, properly approximated data calculations with reduced complexity and low power are preferable to exactly rounded floating-point operations with unnecessary preciseness with cost. Among all the sophisticated floating-point arithmetic operations, multiplication and division are the most complicated and time-consuming, and they can be transformed into addition and subtraction repectively by adopting the logarithmic conversion. In this process, the most important factor for performance is how high we can make an approximation of the logarithm conversion. In this paper, we cover the trends in studying the logarithm conversion circuit designs. We also discuss the important factor in design issues and the applicable fields in detail.

  • PDF

IEEE-754 Floating-Point Divider for Embedded Processors (내장형 프로세서를 위한 IEEE-754 고성능 부동소수점 나눗셈기의 설계)

  • Jeong, Jae-Won;Hong, In-Pyo;Jeong, Woo-Kyong;Lee, Yong-Surk
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.39 no.7
    • /
    • pp.66-73
    • /
    • 2002
  • As floating-point operations become widely used in various applications such as computer graphics and high-definition DSP, the needs for fast division become increased. However, conventional floating-point dividers occupy a large hardware area, and bring bottle-becks to the entire floating-point operations. In this paper, a high-performance and small-area floating-point divider, which is suitable for embedded processors, is designed using he series expansion algorithm. The algorithm is selected to utilize two MAC(Multiply-ACcumulate) units for quadratic convergence to the correct quotient. The two MAC units for SIMD-DSP features are shared and the additional area for the division only is very small. The proposed divider supports all rounding modes defined by IEEE 754 standard, and error estimations are performed for appropriate precision.