• Title/Summary/Keyword: Floating power supply

Search Result 38, Processing Time 0.022 seconds

A Study on Control System Design for Ship Mooring Winch System (무어링 윈치 제어시스템 설계에 관한 연구)

  • Kang, Chang-Nam;Jeong, Ji-Hyun;Kim, Young-Bok
    • Journal of Power System Engineering
    • /
    • v.17 no.3
    • /
    • pp.89-98
    • /
    • 2013
  • In this paper, the authors consider control system design problem of barge type surface vessel. It is based on the Dynamic Positioning System(DPS) design problem. The main role of barge ship is to carry and supply the materials to the floating units and other places. To carry out this job, it should be positioned in the specified area. Even though sometimes the thrust systems are installed on it, in general the mooring winch system with the rope is used. It may be difficult to compare the control performances of two types. But, if we consider this problem in point of usefulness, we can easily find out that the winch control system is more useful and applicable to the real field than the thrust control system except a special use. Therefore, in this paper we consider a single type mooring winch system and control system design problem in which accurate position control is needed. Because this result can be extended to the general type mooring system in which a number of winch are installed. At first, a mathematical model of winch is obtained and evaluated to verify the usefulness for control system design by experiment. Also, the disturbance model is extracted from experiment data to evaluate the strength of the uncertainty. Based on this results, the robust control system is designed and control performance is evaluated by simulation.

Development of Power Management System for Efficient Energy Usage of Small Generator (소형 발전기의 에너지 절약을 위한 전력관리 시스템 개발)

  • Jeon, Min-Ho;Oh, Chang-Hyun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.16 no.12
    • /
    • pp.2601-2606
    • /
    • 2012
  • In this paper, an electricity management system, which saves energy by utilizing electricity consumption of load from an environment that uses at least two compact generators, is proposed and developed. A hardware is constructed by using TMS320C6713 DSP chip made by TI that is capable of high speed hardware floating point processing while serial communication is used for communication with a monitoring PC. Manual control is made possible from the monitoring PC and automatic on/off is enabled in the generator by using data collected by CT/PT sensor from the DSP mainboard. Test results confirm that the electricity management system proposed in this study functions without abnormality. The application of an algorithm that saves energy by using electricity consumption of load also allows for a longer supply of electricity compared to continuously using two compact generators.

Study on the IPMC electrical characteristic change For the utilization of Ocean Current Energy (IPMC 해양 발전 플랜트 모니터링 시스템)

  • Son, Kyung-Min;Kim, Min;Kim, Hyun-jo;Park, Gi-Won;Byun, Gi-Sik
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2013.10a
    • /
    • pp.914-916
    • /
    • 2013
  • Renewable energy from the environment in a variety of ways to obtain various forms of energy. Recent functional polymer composites (EAP) to take advantage of the pressure and vibration of physical energy into electrical energy storage, to take advantage of current collector technology is attracting attention. EAP, a type of IPMC (Ionic exchange Polymer Composite) got a hydrophilic properties, marine power plants is being studied as a source of energy. Studies using IPMC marine power plant because there is a constraint on the time, IPMC in real time, which can measure the power generated by the system is required, Due to the nature of the power plant to be floating in the sea through the power cable and data transmission measurement system is hard drive self-generation and wireless data transmission system is required. In this study, IPMC marine power plant is to develop a system of monitoring. IPMC for several power plants to build individual current-voltage measurement system, CAN communication with the main system to collect all the information and wireless data transmission to occur, and Generation of electricity using solar energy to building systems in real-time without an external power supply to drive the measuring system is to develop a monitoring system.

  • PDF

A Study on the Sea Water DTEC Power Generation System of the FPSO (FPSO의 온배수를 활용한 해수 DTEC 발전시스템에 대한 연구)

  • Song, Young-Uk
    • Journal of Navigation and Port Research
    • /
    • v.42 no.1
    • /
    • pp.9-16
    • /
    • 2018
  • The development of limited petroleum resources for use with mankind inevitably explores and seeks to develop oil fields in the deep sea area, under the rise of the oil prices market situation. The use of Oceanic Thermal Energy Conversion (OTEC) technology, which operates the power generation facility using the temperature differences between the deep water and the surface water, is progressing actively as a trend to follow. In this study, the application of the Discharged Thermal Energy Conversion (DTEC) was designed and analyzed under the condition that the supply condition of seawater used in the FPSO installed in the deep sea area is changed up to 400m depth. In this case, it was confirmed that the design of the system that can generate more electric power according to the depth of water is confirmed, by thus applying the DTEC system by taking the cooling water at a deeper water depth than the existing design water depth. The FPSO considers the similarity of the OTEC power generation facilities, and will apply the DTEC system to FPSO in the deep sea area to accumulate technology and the conversion to further utilize the OTEC power generation facilities after the end of life cycle of oil production, which could be a solution to two important issues, namely, resource development and sustainable development.

Design and Optimization of a Biomass Production System Combined with Wind Power Generation and LED on Marine Environment (LED가 결합된 야간풍력발전 활용을 포함한 해상환경 바이오매스 생산시스템의 최적 설계)

  • Hong, Gi Hoon;Cho, Sunghyun;Kang, Hoon;Park, Jeongpil;Kim, Tae-Ok;Shin, Dongil
    • Journal of the Korean Institute of Gas
    • /
    • v.19 no.2
    • /
    • pp.74-82
    • /
    • 2015
  • Carbon dioxide was designated as one of greenhouse gases that cause global warming. Among various ways to solve the $CO_2$ emission issue, the 3rd-generation biomass (algae) production is considered as a viable method to reduce $CO_2$ in the atmosphere. In this research, we propose a design of an innovative sustainable production system by utilizing the 3rd generation biomass in the environment of floating production storage and offloading (FPSO). Existing biomass production systems depend on the solar energy and they cannot continue producing biomass at night. Electricity produced from offshore wind farms also need an efficient way to store the energy through energy storage system (ESS) or deliver it real-time through power grid, both requiring heavy investment of capital. Thus, we design an offshore grid structure harnessing LED lights to supply the necessary light energy, by using the electricity produced from the wind farm, resulting in the maximized production of biomass and efficient use of wind farm energy. The final design integrates the biomass production system enhanced by LED lights with a wind power generation. The suggested NLP model for the optimal design, implemented in GAMS, would be useful for designing improved offshore biomass production systems combined with the wind farm.

International Monetary System Reform and the G20 (국제통화제도의 개혁과 G20)

  • Cho, Yoon Je
    • KDI Journal of Economic Policy
    • /
    • v.32 no.4
    • /
    • pp.153-195
    • /
    • 2010
  • The recent global financial crisis has been the outcome of, among other things, the mismatch between institutions and the reality of the market in the current global financial system. The International financial institutions (IFIs) that were designed more than 60 years ago can no longer effectively meet the challenges posed by the current global economy. While the global financial market has become integrated like a single market, there is no international lender of last resort or global regulatory body. There also has been a rapid shift in the weight of economic power. The share of the Group of 7 (G7) countries in global gross domestic product (GDP) fell and the share of emerging market economies increased rapidly. Therefore, the tasks facing us today are: (i) to reform the IFIs -mandate, resources, management, and governance structure; (ii) to reform the system such as the international monetary system (IMS), and regulatory framework of the global financial system; and (iii) to reform global economic governance. The main focus of this paper will be the IMS reform and the role of the Group of Twenty (G20) summit meetings. The current IMS problems can be summarized as follows. First, the demand for foreign reserve accumulation has been increasing despite the movement from fixed exchange rate regimes to floating rate regimes some 40 years ago. Second, this increasing demand for foreign reserves has been concentrated in US dollar assets, especially public securities. Third, as the IMS relies too heavily on the supply of currency issued by a center country (the US), it gives an exorbitant privilege to this country, which can issue Treasury bills at the lowest possible interest rate in the international capital market. Fourth, as a related problem, the global financial system depends too heavily on the center country's ability to maintain the stability of the value of its currency and strength of its own financial system. Fifth, international capital flows have been distorted in the current IMS, from EMEs and developing countries where the productivity of capital investment is higher, to advanced economies, especially the US, where the return to capital investment is lower. Given these problems, there have been various proposals to reform the current IMS. They can be grouped into two: demand-side and supply-side reform. The key in the former is how to reduce the widespread strong demand for foreign reserve holdings among EMEs. There have been several proposals to reduce the self-insurance motivation. They include third-party insurance and the expansion of the opportunity to borrow from a global and regional reserve pool, or access to global lender of last resort (or something similar). However, the first option would be too costly. That leads us to the second option - building a stronger globalfinancial safety net. Discussions on supply-side reform of the IMS focus on how to diversify the supply of international reserve currency. The proposals include moving to a multiple currency system; increased allocation and wider use of special drawing rights (SDR); and creating a new global reserve currency. A key question is whether diversification should be encouraged among suitable existing currencies, or if it should be sought more with global reserve assets, acting as a complement or even substitute to existing ones. Each proposal has its pros and cons; they also face trade-offs between desirability and political feasibility. The transition would require close collaboration among the major players. This should include efforts at the least to strengthen policy coordination and collaboration among the major economies, and to reform the IMF to make it a more effective institution for bilateral and multilateral surveillance and as an international lender of last resort. The success on both fronts depends heavily on global economic governance reform and the role of the G20. The challenge is how to make the G20 effective. Without institutional innovations within the G20, there is a high risk that its summits will follow the path of previous summit meetings, such as G7/G8.

  • PDF

Measurement of Journal Bearing Friction Loss of Turbocharger in a Passenger Vehicle (승용차용 터보과급기의 저널 베어링 마찰 손실 측정)

  • Chung, in-Eun;Jeon, Se-Hun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.7
    • /
    • pp.9-15
    • /
    • 2018
  • The turbochargers, which are used widely in diesel and gasoline engines, are an effective device to reduce fuel consumption and emissions. On the other hand, turbo-lag is one of the main problems of a turbocharger. Bearing friction losses is a major cause of turbo lag and is particularly intense in the lower speed range of the engine. Current turbochargers are mostly equipped with floating bearings: two journal bearings and one thrust bearing. This study focused on the bearing friction at the lower speed range and the experimental equipment was established with a drive-motor, load-cell, magnetic coupling, and oil control system. Finally, the friction losses of turbochargers were measured considering the influence of the rotating speed from 30,000rpm to 90,000rpm, oil temperature from $50^{\circ}C$ to $100^{\circ}C$, and oil supply pressure of 3bar and 4bar. The friction power losses were increased exponentially to 1.6 when the turbocharger speed was increased. Friction torques decreased with increasing oil temperature and increased with increasing oil pressure. Therefore, the oil temperature and pressure must be maintained at appropriate levels.

A Design of Memory-efficient 2k/8k FFT/IFFT Processor using R4SDF/R4SDC Hybrid Structure (R4SDF/R4SDC Hybrid 구조를 이용한 메모리 효율적인 2k/8k FFT/IFFT 프로세서 설계)

  • 신경욱
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.8 no.2
    • /
    • pp.430-439
    • /
    • 2004
  • This paper describes a design of 8192/2048-point FFT/IFFT processor (CFFT8k2k), which performs multi-carrier modulation/demodulation in OFDM-based DVB-T receiver. Since a large size FFT requires a large buffer memory, two design techniques are considered to achieve memory-efficient implementation of 8192-point FFT/IFFT. A hybrid structure, which is composed of radix-4 single-path delay feedback (R4SDF) and radix-4 single-path delay commutator (R4SDC), reduces its memory by 20% compared to R4SDC structure. In addition, a memory reduction of about 24% is achieved by a novel two-step convergent block floating-point scaling. As a result, it requires only 57% of memory used in conventional design, reducing chip area and power consumption. The CFFT8k2k core is designed in Verilog-HDL, and has about 102,000 Bates, RAM of 292k bits, and ROM of 39k bits. Using gate-level netlist with SDF which is synthesized using a $0.25-{\um}m$ CMOS library, timing simulation show that it can safely operate with 50-MHz clock at 2.5-V supply, resulting that a 8192-point FFT/IFFT can be computed every 164-${\mu}\textrm{s}$. The functionality of the core is fully verified by FPGA implementation, and the average SQNR of 60-㏈ is achieved.