• Title/Summary/Keyword: Floating power supply

Search Result 38, Processing Time 0.02 seconds

Floating Inverter Amplifiers with Enhanced Voltage Gains Employing Cross-Coupled Body Biasing

  • Jae Hoon Shim
    • Journal of Sensor Science and Technology
    • /
    • v.33 no.1
    • /
    • pp.12-17
    • /
    • 2024
  • Floating inverter amplifiers (FIAs) have recently garnered considerable attention owing to their high energy efficiency and inherent resilience to input common-mode voltages and process-voltage-temperature variations. Since the voltage gain of a simple FIA is low, it is typically cascaded or cascoded to achieve a higher voltage gain. However, cascading poses stability concerns in closed-loop applications, while cascoding limits the output swing. This study introduces a gain-enhanced FIA that features cross-coupled body biasing. Through simulations, it is demonstrated that the proposed FIA designed using a 28-nm complementary metal-oxide-semiconductor technology with a 1-V power supply can achieve a high voltage gain (> 90 dB) suitable for dynamic open-loop applications. The proposed FIA can also be used as a closed-loop amplifier by adjusting the amount of positive feedback due to the cross-coupled body biasing. The capability of achieving a high gain with minimum-length devices makes the proposed FIA a promising candidate for low-power, high-speed sensor interface systems.

Numerical Analyses on Snapback-Free Shorted-Anode SOI LIGBT by using a Floating Electrode and an Auxiliary Gate (플로우팅 전극과 보조 게이트를 이용하여 스냅백을 없앤 애노드 단락 SOI LIGBT의 수치 해석)

  • O, Jae-Geun;Kim, Du-Yeong;Han, Min-Gu;Choe, Yeon-Ik
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.49 no.2
    • /
    • pp.73-77
    • /
    • 2000
  • A dual-gate SOI SA-LIGBT (shorted-anode lateral insulated gate bipolar transistor) which eliminates the snapback effectively is proposed and verified by numerical simulation. The elimination of the snapback in I-V characteristics is obtained by initiating the hole injection at low anode voltage by employing a dual gate and a floating electrode in the proposed device. For the proposed device, the snapback phenomenon is completely eliminate, while snapback of conventional SA-LIGBT occurs at anode voltage of 11 V. Also, the drive signals of two gates have same polarity by employing the floating electrode, thereby requiring no additional power supply.

  • PDF

Low-Power 4th-Order Band-Pass Gm-C Filter for Implantable Cardiac Pacemaker (이식형 심장 박동 조절 장치용 저 전력 4차 대역통과 Gm-C 필터)

  • Lim, Seung-Hyun;Han, Gun-Hee
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.46 no.1
    • /
    • pp.92-97
    • /
    • 2009
  • Low power consumption is crucial for medical implantable devices. A low-power 4th-order band-pass Gm-C filter with distributed gain stage for the sensing stage of the implantable cardiac pacemaker is proposed. For the implementation of large-time constants, a floating-gate operational transconductance amplifier with current division is employed. Experimental results for the filter have shown a SFDR of 50 dB. The power consumption is below $1.8{\mu}W$, the power supply is 1.5 V, and the core area is $2.4\;mm{\times}1.3\;mm$. The filter was fabricated in a 1-poly 4-metal $0.35-{\mu}m$ CMOS process.

A New Ac-to-Dc Power Converter for a Load with Frequent Short Circuits (부하단락이 빈번히 발생하는 경우에 적합한 교류-직류 전력변환기)

  • No, Ui-Cheol;Kim, In-Dong
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.48 no.7
    • /
    • pp.384-390
    • /
    • 1999
  • This paper describes a new ac-to-dc power converter using a multilevel converter. A conventional multilevel ac-to-dc converter has large output dc filter capacitors. When a short circuit happens in a load, the stored energy in the capacitors should be discharged through the load with a high short circuit current. The high current may cause considerable damage to the capacitors and the load. The output dc capacitors of the proposed converter do not discharge even under load short circuit condition. In the case of a load short circuit, the capacitors become a floating state immediately and remain in the state. Then the stored capacitor energy is supplied to the load again as soon as the short circuit has been cleared. Therefore, the rising time of the load voltage can be significantly reduced. This feature satisfies the requirement of a power supply for a load with frequent short circuits. The proposed converter has the characteristics of a simplified structure, a reduced cost, weight, and volume compared with conventional power supplies with frequent output short circuits. Experimental results are presented to verify the usefulness of the proposed converter.

  • PDF

Voltage-Mode CMOS Squarer/Multiplier Circuit

  • Bonchu, B.;Surakampontorn, W.
    • Proceedings of the IEEK Conference
    • /
    • 2002.07a
    • /
    • pp.646-649
    • /
    • 2002
  • In this paper, a low-voltage CMOS squarer and a four-quadrant analog multiplier are presented. It is based on a source-coupled pair and a scaled-floating voltage generator which are modified to work as a voltage squaring and a sum/difference circuits. The proposed squarer/multiplier have been simulated with HSPICE, where -3㏈ bandwidth of 10MHz is achieved. The power consumption is about 0.6㎽, from a ${\pm}$1.5V supply, and the total harmonic distortion is less than 0.7%, with a 1.2V peak-to-peak 1MHz input signal.

  • PDF

Transmission and Substation Planning Study for Grid Connection of Floating Offshore Wind Power (부유식 해상풍력 계통연계를 위한 송변전설비계획 연구)

  • Chung-Hwan Lim;Moon-Sung Bae;Yong-Doo Shin;Chae-Joo Moon
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.19 no.1
    • /
    • pp.53-64
    • /
    • 2024
  • The Yeongnam southeastern region, with Ulsan as its focal point, is planning large-scale floating offshore wind power projects. Additionally, due to the establishment of new nuclear power plants and the extension of existing ones, there is a demand for the expansion of the power grid. The government has announced plans to establish a new power grid for this region as part of the 10th power supply plan. However, there are anticipated challenges in the actual construction phase, primarily because of the presence of national parks and cultural heritage protection zones near Gyeongju. As a result, this study presents an alternative approach that minimizes the creation of new power lines by utilizing existing ones. Using the Power System Simulator for Engineers (PSS/E), an analysis of transient stability was conducted and demonstrated its feasibility.

A Gate Drive IC for Power Modules with Shoot-through Immunity (상단락 방지용 모듈을 구동하기 위한 게이트 구동 IC)

  • Seo, Dae-Won;Kim, Jun-Sik;Park, Shi-Hong
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.22 no.7
    • /
    • pp.580-583
    • /
    • 2009
  • This paper introduces a gate drive IC for power modules with shoot-through immunity. A new approach uses a bootstrap diode as a high-side voltage bias and a level shift function at the same time. Therefore, the gate drive circuit becomes a simple and low-cost without conventional level shift functions such as HVIC(High-Voltage IC), optocoupler and transformer. The proposed gate drive IC is designed and fabricated using the Dongbu-Hitek's 0.35um BD350BA process. It has been tested and verified with IGBT modules.

A Gate Drive IC for Power Modules with Shoot-Through Immunity (상단락 방지용 모듈을 구동하기 위한 게이트 구동 IC)

  • Seo, Dae-Won;Kim, Jun-Sik;Park, Shi-Hong
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.04b
    • /
    • pp.81-82
    • /
    • 2009
  • This paper introduces a gate drive IC for power modules with shoot-through immunity. A new approach uses a bootstrap diode as a high-side voltage bias and a level shift function at the same time. Therefore, the gate drive circuit becomes a simple and low-cost without conventional level shift functions such as HVIC(High-Voltage IC), optocoupler and transformer. The proposed gate drive IC is designed and fabricated using the Dongbu-Hitek's 0.35um BD350BA process. It has been tested and verified with IGBT modules.

  • PDF

High Density and Low Voltage Programmable Scaled SONOS Nonvolatile Memory for the Byte and Flash-Erased Type EEPROMs (플래시 및 바이트 소거형 EEPROM을 위한 고집적 저전압 Scaled SONOS 비휘발성 기억소자)

  • 김병철;서광열
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.15 no.10
    • /
    • pp.831-837
    • /
    • 2002
  • Scaled SONOS transistors have been fabricated by 0.35$\mu\textrm{m}$ CMOS standard logic process. The thickness of stacked ONO(blocking oxide, memory nitride, tunnel oxide) gate insulators measured by TEM are 2.5 nm, 4.0 nm and 2.4 nm, respectively. The SONOS memories have shown low programming voltages of ${\pm}$8.5 V and long-term retention of 10-year Even after 2 ${\times}$ 10$\^$5/ program/erase cycles, the leakage current of unselected transistor in the erased state was low enough that there was no error in read operation and we could distinguish the programmed state from the erased states precisely The tight distribution of the threshold voltages in the programmed and the erased states could remove complex verifying process caused by over-erase in floating gate flash memory, which is one of the main advantages of the charge-trap type devices. A single power supply operation of 3 V and a high endurance of 1${\times}$10$\^$6/ cycles can be realized by the programming method for a flash-erased type EEPROM.

Design of Two-Stage Class AB CMOS Buffers: A Systematic Approach

  • Martin, Antonio Lopez;Miguel, Jose Maria Algueta;Acosta, Lucia;Ramirez-Angulo, Jaime;Carvajal, Ramon Gonzalez
    • ETRI Journal
    • /
    • v.33 no.3
    • /
    • pp.393-400
    • /
    • 2011
  • A systematic approach for the design of two-stage class AB CMOS unity-gain buffers is proposed. It is based on the inclusion of a class AB operation to class A Miller amplifier topologies in unity-gain negative feedback by a simple technique that does not modify quiescent currents, supply requirements, noise performance, or static power. Three design examples are fabricated in a 0.5 ${\mu}m$ CMOS process. Measurement results show slew rate improvement factors of approximately 100 for the class AB buffers versus their class A counterparts for the same quiescent power consumption (< 200 ${\mu}W$).