• 제목/요약/키워드: Floating Motion

검색결과 433건 처리시간 0.022초

해상 크레인 탄성 붐 적용을 위한 3D 빔(beam) 유한 요소 정식화 및 자동화 (Automation of 3 Dimensional Beam Modeling based on Finite Element Formulation for Elastic Boom of a Floating Crane)

  • 박광필;차주환;이규열;함승호
    • 한국CDE학회논문집
    • /
    • 제15권6호
    • /
    • pp.411-417
    • /
    • 2010
  • In this paper, the boom of a floating crane is modeled as a 3-dimensional elastic beam in order to analyze the dynamic response of the crane and its cargo. The boom is divided into more than two elements based on finite element formulation, and deformation of each element is expressed in terms of shape matrix and nodal coordinates. The equations of motion for the elastic boom consist of a mass matrix, a stiffness matrix, and a quadratic velocity vector that contains the gyroscopic and Coriolis forces. The size and complicity of the matrices increase in proportion with the number of elements. Therefore, it is not possible to derive the equations of motion explicitly for different number of elements. To overcome this difficulty, matrices for one 3-dimensional element are expressed with elementary sub-matrices. In particular, the quadratic velocity vector is derived as a product of a shape matrix and a 3-dimensional rotation matrix. By using the derived matrices, the equations of motion for the multi-element boom are automatically constructed. To verify the implementation of the elastic boom based on finite element formulation, we simulated a simple vibration of the elastic boom and compared the average deformation with the analytic solution. Finally, heave motion of the floating crane and surge motion of the cargo are presented as application examples of the elastic boom.

부유체 운동해석을 위한 부분행렬 이용방법 (An Application of the Matrix Partitioning for the Motion Analysis of Floating Bodies)

  • 김동준;윤길수
    • 한국항해학회지
    • /
    • 제10권1호
    • /
    • pp.129-138
    • /
    • 1986
  • A matrix partitioning method is proposed for the 2-D motion analysis of floating bodies. For the numerical solution, the boundary of a floating body is approximated with a series of line segments and the governing integral equation is transformed into a system of linear equations. A new solution procedure of resulting linear equation with complex coefficients is formulated and programmed using a matrix partitioning scheme and the Choleski decomposition. From the case study, it is found that the proposed method is efficient in the motion analysis of floating bodies, especially in the calculation of hydrodynamic coefficients. Also, it requires smaller memory size and less computing time compared with conventional methods.

  • PDF

2 MW 영구자석 직접 구동형 부유식 스파 부이 풍력 발전기의 피칭 운동해석 (Pitching Motion Analysis of Floating Spar-buoy Wind Turbine of 2MW Direct-drive PMSG)

  • 신평호;경남호;최정철;고희상
    • 한국태양에너지학회 논문집
    • /
    • 제37권1호
    • /
    • pp.1-14
    • /
    • 2017
  • A series of coupled time domain simulations considering stochastic waves and wind based on five 1-h time-domain analyses are performed in normal operating conditions. Power performance and tower base Fore-Aft bending moment and pitching motion response of the floating spar-buoy wind turbine with 2 MW direct-drive PMSG have been analyzed by using HAWC2 that account for aero-hydro-servo-elastic time domain simulations. When the floating spar-buoy wind turbine is tilted in the wind direction, maximum of platform pitching motion is close to $4^{\circ}$. Statistical characteristics of tower base Fore-Aft bending moment of floating spar-buoy wind turbine are compared to that of land-based wind turbine. Maximum of tower base Fore-Aft bending moment of floating spar-buoy wind turbine and land-based wind is 94,448 kNm, 40,560 kNm respectively. This results is due to changes in blade pitch angle resulting from relative motion between wave and movement of the floating spar-buoy wind turbine.

해상크레인으로 인양하는 중량물의 Tagline 제어를 위한 다물체계 동역학 시뮬레이션 및 실험 (Multibody Dynamics Simulation and Experimental Study on the Tagline Control of a Cargo Suspended by a Floating Crane)

  • 구남국;이규열;권정한;차주환;함승호;하솔;박광필
    • 한국시뮬레이션학회논문지
    • /
    • 제19권1호
    • /
    • pp.13-22
    • /
    • 2010
  • 본 논문에서는 해상 크레인이 인양하는 중량물의 운동 감쇠를 위하여 Tagline을 이용한 PD제어를 수행하였다. 해상 크레인 및 중량물을 각각 6자유도 운동을 하는 강체로 가정하고 뉴턴의 제 2법칙에 따라 운동 방정식을 유도하였다. 중량물의 운동을 감쇠하기 위한 제어 메커니즘으로 Tagline을 사용 하였고, 해상 크레인의 Deck에 설치한 Winch로 Tagline의 장력을 조절하였다. 장력을 조절하는 제어 알고리즘으로는 PD제어를 사용 하였다. 이를 바탕으로 수치적 제어 시뮬레이션을 수행하였다. 또한, 1/100 Scale의 모형 해상 크레인을 제작하고 실험을 통해 제어 시뮬레이션의 결과를 검증 하였다. 제어 시뮬레이션과 모형 시험 수행 결과 Tagline을 이용한 제어가 중량물의 운동을 감쇠시키는데 효과가 있음을 알 수 있었다.

계류장치 연결 위치가 Spar Type 부유식 해상풍력 발전기의 동적 응답에 미치는 영향 해석 (Analysis of Effects of Mooring Connection Position on the Dynamic Response of Spar type Floating Offshore Wind Turbine)

  • 조양욱;조진래;정의봉
    • 한국소음진동공학회논문집
    • /
    • 제23권5호
    • /
    • pp.407-413
    • /
    • 2013
  • This paper deals with the analysis of dynamic characteristics of mooring system of floating-type offshore wind turbine. A spar-type floating structure which consists of a nacelle, a tower and the platform excepting blades, is used to model the floating wind turbine and connect three catenary cables to substructure. The motion of floating structure is simulated when the mooring system is attached using irregular wave Pierson-Moskowitz model. The mooring system is analyzed by changing cable position of floating structure. The dynamic behavior characteristics of mooring system are investigated comparing with cable tension and 6-dof motion of floating structure. These characteristics are much useful to initial design of floating-type structure. From the simulation results, the optimized design parameter that is cable position of connect point of mooring cable can be obtained.

해양플랜트에 병렬 계류된 LNG 운반선의 거동에 슬로싱이 미치는 영향 (The Effects of Sloshing on the Responses of an LNG Carrier Moored in a Side-by-side Configuration with an Offshore Plant)

  • 이승재
    • 한국해양공학회지
    • /
    • 제24권5호
    • /
    • pp.16-21
    • /
    • 2010
  • During the loading/offloading operation of a liquefied natural gas carrier (LNGC) that is moored in a side-by-side configuration with an offshore plant, sloshing that occurs due to the partially filled LNG tank and the interactive effect between the two floating bodies are important factors that affect safety and operability. Therefore, a time-domain software program, called CHARM3D, was developed to consider the interactions between sloshing and the motion of a floating body, as well as the interactions between multiple bodies using the potential-viscous hybrid method. For the simulation of a floating body in the time domain, hydrodynamic coefficients and wave forces were calculated in the frequency domain using the 3D radiation/diffraction panel program based on potential theory. The calculated values were used for the simulation of a floating body in the time domain by convolution integrals. The liquid sloshing in the inner tanks is solved by the 3D-FDM Navier-Stokes solver that includes the consideration of free-surface non-linearity through the SURF scheme. The computed sloshing forces and moments were fed into the time integration of the ship's motion, and the updated motion was, in turn, used as the excitation force for liquid sloshing, which is repeated for the ensuing time steps. For comparison, a sloshing motion coupled analysis program based on linear potential theory in the frequency domain was developed. The computer programs that were developed were applied to the side-by-side offloading operation between the offshore plant and the LNGC. The frequency-domain results reproduced the coupling effects qualitatively, but, in general, the peaks were over-predicted compared to experimental and time-domain results. The interactive effects between the sloshing liquid and the motion of the vessel can be intensified further in the case of multiple floating bodies.

Experimental and numerical study on coupled motion responses of a floating crane vessel and a lifted subsea manifold in deep water

  • Nam, B.W.;Kim, N.W.;Hong, S.Y.
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제9권5호
    • /
    • pp.552-567
    • /
    • 2017
  • The floating crane vessel in waves gives rise to the motion of the lifted object which is connected to the hoisting wire. The dynamic tension induced by the lifted object also affects the motion responses of the floating crane vessel in return. In this study, coupled motion responses of a floating crane vessel and a lifted subsea manifold during deep-water installation operations were investigated by both experiments and numerical calculations. A series of model tests for the deep-water lifting operation were performed at Ocean Engineering Basin of KRISO. For the model test, the vessel with a crane control system and a typical subsea manifold were examined. To validate the experimental results, a frequency-domain motion analysis method is applied. The coupled motion equations of the crane vessel and the lifted object are solved in the frequency domain with an additional linear stiffness matrix due to the hoisting wire. The hydrodynamic coefficients of the lifted object, which is a significant factor to affect the coupled dynamics, are estimated based on the perforation value of the structure and the CFD results. The discussions were made on three main points. First, the motion characteristics of the lifted object as well as the crane vessel were studied by comparing the calculation results. Second, the dynamic tension of the hoisting wire were evaluated under the various wave conditions. Final discussion was made on the effect of passive heave compensator on the motion and tension responses.

OC3 Hywind 부유식 풍력발전기 플랫폼의 유체력 계산 및 운동해석 (Hydrodynamic force calculation and motion analysis of OC3 Hywind floating offshore wind turbine platform)

  • 김민수;이강수
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제37권8호
    • /
    • pp.953-961
    • /
    • 2013
  • 이 연구에서는 부유식 풍력발전기 콘셉트모델중의 하나인 5MW급 OC3-Hywind를 해석하였다. 이 모델은 스파형 플랫폼을 가지고 있으며 3개의 현수식 계류삭으로 해저면과 연결되어있다. 수치해석프로그램으로는 NREL에서 개발한 FAST와 AQWA가 사용되었다. FAST에 입력되는 유체력은 AQWA를 통해서 계산되었으며, 운동특성으로는 전달응답함수와 평균운동, 상위1/3운동, 상위1/10운동을 평가하였다. 다른기관의 해석, 실험결과와 비교하였으며, 이 결과는 부유식풍력발전기 컨셉모델의 기초설계를 재해석하는데 있어 도움이 될것이다.

섭동법을 이용한 부유 한성체의 동역학 해석 (Dynamic Analysis of Floating Flexible Body Using Perturbation Method)

  • 성관제;곽문규
    • 한국소음진동공학회논문집
    • /
    • 제14권12호
    • /
    • pp.1354-1359
    • /
    • 2004
  • This paper is concerned with the application of perturbation method to the dynamic analysis of floating flexible body. In dealing with the dynamics of free-floating body, the rigid-body motions and elastic vibrations are analyzed separately. However, the rigid-body motions cause vibrations and elastic vibrations also affect rigid-body motions in turn, which indicates that the rigid-body motions and elastic vibrations are coupled in nature. The resulting equations of motion are hybrid and nonlinear. We can discretize the equations of motion by means of admissible functions but still we have to cope with nonlinear equations. In the previous paper, we proposed the use of perturbation method to the coupled equations of motion and derived zero-order and first-order equations of motion. The derivation process was lengthy and tedious. Hence, in this paper, we propose a new approach to the same problem by applying the perturbation method to the Lagrange's equations, thus providing a systematic approach to the addressed problem. Theoretical derivations show the efficacy of the proposed method.

Heave Compensator를 고려한 파랑 중 해상 크레인 설치작업 수치해석 (Numerical Analysis of Offshore Installation Using a Floating Crane with Heave Compensator in Waves)

  • 남보우;홍사영;김종욱;이동엽
    • 한국해양공학회지
    • /
    • 제26권1호
    • /
    • pp.70-77
    • /
    • 2012
  • In this study, a numerical analysis of offshore installation using a floating crane with heave compensator is carried out in time domain. The motion analysis of crane vessels is based on floating body dynamics using convolution integral and the crane wire is treated as simple spring. The lifted structure is assumed as a rigid body with 3 degree-of-freedom translational motion. The heave compensator is numerically modelled by the generalized spring-damper system. Firstly, forced motion simulations of crane wire system are carried out to figure out the basic principle of heave compensator. The transfer function of crane wire system is obtained and effective wave period of heave compensator are found. Then, coupled analysis of crane vessel, crane wire, and lifted structure are performed in regular and irregular sea conditions. Two different crane vessels and two lifted structures (suction pile and manifold) are considered in this study. Through a series of numerical calculations, the effective zone of heave compensator is investigated with respect to wave period and crane wire length.