• Title/Summary/Keyword: Floating Crane

Search Result 55, Processing Time 0.023 seconds

Spatial Scheduling for Mega-block Assembly Yard in Shipbuilding Company (조선소의 메가블록 조립작업장을 위한 공간계획알고리즘 개발)

  • Koh, Shie-Gheun;Jang, Jeong-Hee;Choi, Dae-Won;Woo, Sang-Bok
    • IE interfaces
    • /
    • v.24 no.1
    • /
    • pp.78-86
    • /
    • 2011
  • To mitigate space restriction and to raise productivity, some shipbuilding companies use floating-docks on the sea instead of dry-docks on the land. In that case, a floating-crane that can lift very heavy objects (up to 3,600 tons) is used to handle the blocks which are the basic units in shipbuilding processes, and so, very large blocks (these are called the mega-blocks) can be used to build a ship. But, because these mega-blocks can be made only in the area near the floating-dock and beside the sea, the space is very important resource for the process. Therefore, our problem is to make an efficient spatial schedule for the mega-block assembly yard. First of all, we formulate this situation into a mathematical model and find optimal solution for a small problem using a commercial optimization software. But, the software could not give optimal solutions for practical sized problems in a reasonable time, and so we propose a GA-based heuristic algorithm. Through a numerical experiment, finally, we show that the spatial scheduling algorithm can provide a very good performance.

Development of the Trichomes in Floating Leaves of Salvinia Species (생이가래속(Salvinia) 부유엽 모용의 분화발달)

  • Seo, Ae-Ri;Kim, In-Sun
    • Applied Microscopy
    • /
    • v.38 no.2
    • /
    • pp.117-124
    • /
    • 2008
  • Salvinia is an aquatic plant forming dimorphic leaves that have been modified into floating and submerged leaves. A air of floating leaves plays an important role for the floating and photosynthesis while the submerged leaves, which are lim and long, have the form and function of root. Many aquatic plants develop trichomes in the epidermis but in Salvinia, richomes grow densely in the epidermis of the dimorphic leaves. The present study examined the differentiation pattern of trichomes developing in the floating leaves of S. natans and S. molesta by scanning and transmission electron microscopy. Trichomes developing in the floating leaves of Salvinia showed very different patterns. In S. natans, they were arranged in a V-shape form, having 20${\sim}$25 rows at $18{\sim}25^{\circ}$ on both sides of the lamina divided by the midrib in the floating leaf. In each row, 8${\sim}$10 oval-shaped cells, $200{\sim}290{\mu}m$ in length, were arranged in a spiral fashion. Four trichomes of this form made a trichome unit, but their apical parts were separated from one another and developed into the so-called 'knuckle-crane' type. On the other hand, in S. molesta, trichomes differentiated in a unique pattern quite different from those of S. natans. At the early stage of differentiation, trichomes protruded from the epidermis and then 4${\sim}$6 cylindrical cells grew $400{\sim}600{\mu}m$ long and the four trichomes formed as an unit. The four grouped trichomes were interconnected through their apex and developed in the 'egg-beater' type. Then $300{\sim}600{\mu}m$ long multi-cellular stalk cells grew and protruded out of the epidermal surface from the basal part of the trichomes. Such a structural characteristic of trichomes is considered to play a very important role along with the aerenchyma tissue in the leaf mesophyll tissue for the floating of Salvinia on the water surface.

Dynamic Response Simulation of a Heavy Cargo Suspended by Parallel Connected Floating Cranes (병렬 연결된 해상 크레인을 이용한 대형 중량물 인양 작업의 동적 거동 계산 시뮬레이션)

  • Cha, Ju-Hwan;Ku, Nam-Kug;Roh, Myung-Il;Lee, Kyu-Yeul
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.6
    • /
    • pp.681-689
    • /
    • 2012
  • In this study, we performed a simulation of the dynamic response of a multibody system to calculate the tension acting on wire ropes connecting floating cranes and a heavy cargo such as a Giga Block weighing over 5000 tons when the cargo is salvaged using parallel connected floating cranes. In this simulation, we supposed that the motion of the floating cranes, barge ship, and heavy cargo has 6 degrees of freedom and that the interaction is determined by constraints among them. In addition, we considered independent hydrostatic and hydrodynamic forces as external forces acting on the floating cranes and barge ship. The simulation result can be a basis for verifying the safety of construction methods in which heavy cargo is salvaged by parallel connected floating cranes, and it can also be used to guide the development of such construction methods.

A Study on Stability Hanging Guide Frame used in Floating Crane (해상 Crane용 Guide Frame의 안정성에 관한 연구)

  • 장동일;민인기
    • Journal of the Korean Society of Safety
    • /
    • v.14 no.1
    • /
    • pp.33-40
    • /
    • 1999
  • In this paper, a damaged example of hanging guide frame used in the lifting of shore protection caisson was investigated. An examination of the stress and stability of members was carried out by structural analysis and the causes of damages was investigated. The stability analysis considering local and global stress buckling was performed. As a result of stability analysis. the first structure was unstable structure. Therefore improved structure was examined and the best effective methodology was the reassignment of wire.

  • PDF

Hydrodynamic Interaction Analysis of Floating Multi-body System

  • Kim, Young-Bok;Kim, Moo-Hyun;Kim, Yong-Yook;Kim, Young-Hun
    • International Journal of Ocean System Engineering
    • /
    • v.1 no.4
    • /
    • pp.198-204
    • /
    • 2011
  • Recently, several problems have occurred in the space, infra-structure, and facility of the contiguity of existing harbors due to the trend of enlarged container vessels. In this regard, the Mobile Harbor has been proposed conceptually in this study as an effective solution for these problems. The concept is that of a transfer loader that transfers containers from a large container ship to the harbor on land, and is a catamaran type floating barge. The catamaran-type vessel is well known for its advantage in maneuverability, resistance, and effectiveness for working on board. For the safe and effective operation of the two floating bodies (a container ship and the mobile harbor in the near sea detached from the quay), robot arms, novel crane systems, and pneumatic fenders are specially devised with an additional mooring facility or DP (dynamic positioning) system. In this study, this concept is to be verified through comparison and simulation studies under various environmental conditions. It is shown that the proposed concept is in general feasible but there are several areas for further investigation and improvement.

Innovative Methodology for Assembling Jack up Leg of 205m on ground of Ultra

  • Yang, Yeong-Tae;Sim, Song-Seop;Lee, Seung-Yeop;Hwang, Oe-Ju;Sin, Bong-Yeong
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2003.10a
    • /
    • pp.87-92
    • /
    • 2003
  • Generally, in jack up rig design for harsh environment, its leg height is a major factor for achieving a sufficient serviceability & operability in terms of the worst environment and the workable depth. Due to difficulties in constructing such a high-slender leg, inaccessibility of yard fabrication equipment, etc. the construction of Jack up rig fur harsh deep sea has not been common. Method using heavy crawler crane, fabrication tower or extension by the floating crane vessel is still conventional construction but, considering high cost fur mobilizing heavy lift vessel (HLV) or additional marine work for implementing preload / full height test at sea, the ground-base construction is much advantageous. Air skidding method (ASM hereafter) is ground-based construction methodology, newly developed due to such requests. ASM could also be extended to similar engineering fields. This paper presents the operating sequence, design parameters and procedure which were verified through successful operation at the end of May 2002.

  • PDF

A collaborative simulation in shipbuilding and the offshore installation based on the integration of the dynamic analysis, virtual reality, and control devices

  • Li, Xing;Roh, Myung-Il;Ham, Seung-Ho
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.11 no.2
    • /
    • pp.699-722
    • /
    • 2019
  • It is difficult to observe the potential risks of lifting or turn-over operations in the early stages before a real operation. Therefore, many dynamic simulations have been designed to predict the risks and to reduce the possibility of accidents. These simulations, however, have usually been performed for predetermined and fixed scenarios, so they do not reflect the real-time control of an operator that is one of the most important influential factors in an operation; additionally, lifting or turn-over operations should be a collaboration involving more than two operators. Therefore, this study presents an integrated method for a collaborative simulation that allows multiple workers to operate together in the virtual world. The proposed method is composed of four components. The first component is a dynamic analysis that is based on multibody-system dynamics. The second component is VR (virtual reality) for the generation of realistic views for the operators. The third component comprises the control devices and the scenario generator to handle the crane in the virtual environment. Lastly, the fourth component is the HLA (high-level architecture)-based integrated simulation interface for the convenient and efficient exchange of the data through the middleware. To show the applicability of the proposed method, it has been applied to a block turn-over simulation for which one floating crane and two crawler cranes were used, and an offshore module installation for which a DCR (dual-crane rig) was used. In conclusion, the execution of the proposed method of this study is successful regarding the above two applications for which multiple workers were involved.

On the Effect of Bulwarks on Transverse Stability of Box-type Vessels (상자형부유체의 횡복원성에 미치는 Bulwark 의 영향)

  • 윤명오;손경호
    • Journal of the Korean Institute of Navigation
    • /
    • v.10 no.2
    • /
    • pp.11-29
    • /
    • 1986
  • As per the expanding needs of marine exploitation, many floating structures have been built. Among these, box-type vessel is considered as the most basic shape, to which plant barges and crane barges belong. Stability problem is very important for vessel. In order to increase transverse stability, this paper employs bulwarks along the upper deck sides of box-type vessels and the emphasis is laid upon the effect of bulwarks on transverse stability. In the present paper, the calculation method of heeling moment acting to the ship due to hydrostatic pressure is suggested, and actual procedures of the calculation for box-type vessels with bulwarks are shown. Furthermore corresponding model tests are carried out in small water tank. Through the comparison between calculated and measured values, it is confirmed that the preset calculation method is useful. And employing bulwarks on box-type vessels is very effective for increase of transverse stability at the heeling angles from about 15 degrees to about degrees.

  • PDF

Comparative evaluation of different offshore wind turbine installation vessels for Korean west-south wind farm

  • Ahn, Dang;Shin, Sung-chul;Kim, Soo-young;Kharoufi, Hicham;Kim, Hyun-cheol
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.9 no.1
    • /
    • pp.45-54
    • /
    • 2017
  • The purpose of this study is to evaluate various means of wind power turbines installation in the Korean west-south wind farm (Test bed 100 MW, Demonstrate site 400 MW). We presented the marine environment of the southwest offshore wind farm in order to decide the appropriate installation vessel to be used in this site. The various vessels would be WTIV (Wind turbine installation vessel), jack-up barge, or floating crane ${\cdots}$ etc. We analyzed the installation cost of offshore wind turbine and the transportation duration for each vessel. The analysis results showed the most suitable installation means for offshore wind turbine in the Korean west-south wind farm.

Elastic Boom Modeling of a Floating Crane based on Finite Element Formulation (유한 요소 정식화를 이용한 해상 크레인 붐(boom)의 탄성체 모델링)

  • Park, Kwang-Phil;Cha, Ju-Hwan;Lee, Kyu-Yeul
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2010.04a
    • /
    • pp.192-195
    • /
    • 2010
  • 본 논문에서는 해상 크레인과 중량물의 동적 거동을 시뮬레이션하기 위해, 유한 요소 정식화(finite element formulation)를 이용하여 해상 크레인의 붐(boom)을 탄성체로 모델링 하였다. 붐은 3차원 탄성 빔(beam) 요소로 가정하고, 각 요소의 변형에 의한 변위는 형상 함수(shape function)과 절점 좌표(nodal coordinate)를 이용하여 정의하였다. 변형 변위를 이용하여 탄성 붐의 강성 행렬(stiffnes matrix)을 유도하고, 탄성 변위를 포함하는 위치 벡터를 이용하여 질량 행렬을 유도한다. 해상 크레인과 중량물로 이루어진 운동 방정식에 탄성 붐을 포함하여 유연 다물체계(flexible multibody system) 운동 방정식을 구성한다. 외력으로는 선박 유체정역학적 힘, 유체동역학적 힘, wire rope의 장력, 중력 그리고 계류력(mooring force)이 고려되었다. 먼저 요소의 개수를 변경하며 탄성 붐의 동적 거동을 시뮬레이션 하여, 유한 요소 정식화를 이용한 모델링의 타당성을 검증하였다. 그리고 해상 크레인과 중량물의 동적 거동 시뮬레이션에 탄성 붐 모델을 적용하였다.

  • PDF