• 제목/요약/키워드: Floating Body

검색결과 341건 처리시간 0.041초

내부 슬로싱 현상을 이용한 사각상자 형태의 부유체 Sway 거동 모사에 대한 수치적 고찰 (Numerical study of sway motion of a rectangular floating body with inner sloshing phenomena)

  • 하민호;정철웅
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2013년도 춘계학술대회 논문집
    • /
    • pp.161-165
    • /
    • 2013
  • In this paper, possibility of controlling motion of a floating structure using a tuned liquid damper (TLD) is numerically investigated. A TLD is a tank partially filled with liquid. Sloshing phenomena of liquid inside a tank can suppress movement of the tank subject to external excitations at specific frequency. The effects of sloshing phenomena inside a rectangular floating body on its sway motion are investigated by varying excitation frequency. First, a grid-refinement study is carried out to ensure validity of grid independent numerical solutions using present numerical techniques. Then, sway motion of the floating body subjected to wave with five different frequencies are simulated. The normalized amplitudes of sway motion of the target floating body are compared over the frequency, for cases with and without water inside the floating body. It is shown that the motion of the floating body can be minimized by matching the sloshing natural frequency to excitation frequency.

  • PDF

부유체-몰수체 상호작용을 이용한 부유체 상하운동 저감에 대한 실험적 연구 (Experimental Study on the Reduction of Vertical Motion of Floating Body Using Floating-Submerged Bodies Interaction)

  • 신민재;구원철;김성재;허상환;민은홍
    • 대한조선학회논문집
    • /
    • 제54권6호
    • /
    • pp.485-491
    • /
    • 2017
  • An experimental study on the reduction of vertical motion of floating body using floating-submerged body interaction was performed in a two-dimensional wave channel. The system consisting of a floating and submerged body that only move vertically was modeled. This experiment was designed based on the results of theoretical analysis of two-body interaction. The results showed a tendency to significant reduction of heave RAO of floating body due to submerged body. Various connection line stiffness and dimension of the submerged body were applied to investigate the effect of two-body interaction on the vertical motion of the bodies, Heave RAOs of the floating-submerged body were compared with those of single body. From the comparison study, we obtained an optimum condition of connection line and dimension of submerged body for maximum heave reduction at the resonant period of single body.

내부 슬로싱 현상에 따른 사각상자 형태의 부유체 서지 거동에 대한 수치적 고찰 (Numerical Investigation on Surge Motion of a Rectangular Floating Body due to Inner Sloshing Phenomena)

  • 하민호;정철웅
    • 한국소음진동공학회논문집
    • /
    • 제23권7호
    • /
    • pp.662-668
    • /
    • 2013
  • In this paper, possibility of controlling motion of a floating structure using a tuned liquid damper (TLD) is numerically investigated. A TLD is a tank partially filled with liquid. Sloshing motion of liquid inside a tank is known to suppress movement of the tank subject to external excitations at specific frequency. The effects of sloshing phenomena inside a rectangular floating body on its surge motion are investigated by varying external excitation frequency. First, a grid-refinement study is carried out to ensure validity of grid independent numerical solutions using present numerical techniques. Then, surge motion of the floating body subjected to external wave is simulated for five different excitation frequencies of which the center frequency equals to the natural frequency of internal liquid sloshing. The normalized amplitudes of surge motion of the target floating body are compared according to the excitation frequency, for the cases with and without water inside the floating body. It is shown that the motion of the floating body can be minimized by matching the sloshing natural frequency to the excitation frequency.

Dynamic characteristics between waves and a floating cylindrical body connected to a tension-leg mooring cable placed in a simulated offshore environment

  • Song, Juhun;So, Soo-Hyun;Lim, Hee-Chang
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제8권4호
    • /
    • pp.375-385
    • /
    • 2016
  • Given the rapid progress made in understanding the dynamics of an offshore floating body in an ocean environment, the present study aimed to simulate ocean waves in a small-sized wave flume and to observe the motion of a cylindrical floating body placed in an offshore environment. To generate regular ocean waves in a wave flume, we combined a wave generator and a wave absorber. In addition, to precisely visualise the oscillation of the body, a set of light-emitting diode illuminators and a high-speed charge-coupled device camera were installed in the flume. This study also focuses on the spectral analysis of the movement of the floating body. The wave generator and absorbers worked well to simulate stable regular waves. In addition, the simulated waves agreed well with the plane waves predicted by shallow-water theory. As the period of the oncoming waves changed, the movement of the floating body was substantially different when tethered to a tension-leg mooring cable. In particular, when connected to the tension-leg mooring cable, the natural frequency of the floating body appeared suddenly at 0.391 Hz as the wave period increased.

한국해양환경을 고려한 부유식 마리나 구조물의 운동성능 향상에 관한 연구 (A Study on the Improvement of the Motion Performance of Floating Marina Structures Considering Korea Coastal Environment)

  • 김동민;허상환;구원철
    • 한국해양공학회지
    • /
    • 제33권1호
    • /
    • pp.10-16
    • /
    • 2019
  • The aim of this study was to improve the vertical motion performance of floating marina structures and to optimize the shapes of the structures for the Korea coastal environment. The floating body is connected to a plate-shaped submerged body through a connecting line under the water that has a stiff spring that serves to reduce the heave response. This system, which has two degrees of freedom, was modelled to analyze the interaction between the floating body and the submerged body. The vertical motion of the two-body system was compared with the motion of a single body to verify that the system could perform as an optimized model.

Floating-Body기술을 이용한 낮은 트리거 전압을 갖는 GCNMOS 기반의 ESD 보호회로에 관한 연구 (A Study on GCNMOS-based ESD Protection Circuit Using Floating-Body Technique With Low Trigger Voltage)

  • 정준모
    • 전기전자학회논문지
    • /
    • 제21권2호
    • /
    • pp.150-153
    • /
    • 2017
  • 본 논문에서는 Floating기술을 이용한 GCNMOS 기반의 ESD(Electrostatic Discharge)보호회로를 제안한다. 제안된 보호회로의 특성 분석을 위해서 시놉시스사의 TCAD 시뮬레이션을 이용하였으며 기존의 GGNMOS, GCNMOS와 비교 분석하였다. 제안된 보호회로는 Gate coupling과 Body floating기술을 적용하였으며 기존 ESD보호회로인 GGNMOS, GCNMOS와 비교하여 더 낮은 4.86V의 트리거 전압 및 1.47ns의 짧은 턴-온 타임 특성을 갖는다.

수상 태양광 발전 시스템의 부유체 형상과 구성요소가 수력학적 안전성에 미치는 영향 (Effect of the floating body shape and other composition on the hydrodynamic safety of floating photo-voltaic system)

  • 최지웅;이규한;김재운;허남욱;차용현;하호진
    • 한국가시화정보학회지
    • /
    • 제19권1호
    • /
    • pp.18-27
    • /
    • 2021
  • As the photo-voltaic (PV) industry grows, the floating PV has been suggested to resolve current environmental destruction and a lack of installation area. Currently, various floating PV systems have been developed, but there is a lack of studies on how the shape of the floating body and other compositions are affecting structural behavior. In this study, the behavior of the floating PV was investigated at the various length of mooring lines, stiffness of connecting hinges, and size of floating bodies. The shortest mooring lines with the distributed type floating PV showed the least force on the floating body and corresponding motion. A frictionless hinge is safer at the regular and low-height wave, while a stiff hinge is safer at irregular and high-height wave. In addition, due to the bi-axial distribution of the connecting hinge, 45° direction wave was found to be the most dangerous.

Numerical Analysis of Floating-Body Motions in Varying Bathymetry

  • Kim, Taeyoung;Kim, Yonghawn
    • International Journal of Ocean System Engineering
    • /
    • 제4권1호
    • /
    • pp.43-48
    • /
    • 2014
  • Varying bathymetry significantly affects on the wave propagation and motion response of floating body. Coupled-mode wave theory is adopted to describe the incident wave properly in varying region. The results of waves and motion response are compared to those from numerical wave tank, and the agreement is favorable. The sloped bottom is modeled and its effect on the floating body is discussed.

말뚝계류식 부유체의 파랑제어 기능과 마찰감에 관한 연구 (Wave control fuction and friction damping of a pile-supported floating body)

  • 김헌태
    • 한국해양공학회지
    • /
    • 제11권1호
    • /
    • pp.65-73
    • /
    • 1997
  • 본 연구는 부유식 파랑제어구조물의 계류방식을 말뚝계류식으로 하여 종래의 부유식 파랑제어구조물의 파랑제어기능을 보완하고, 친수성 구조물로 이용할 수 있는 다용도 구조물의 개발을 목표로 하고 있다. 본 연구에서는 부유체의 계류장치에 초기반력을 작용시킴으로써 발생하는 파랑제어 효과의 개선과 부유체의 동요제어 효과를 수치계산법을 통하여 논의하였다. 이 때 계류부에서 발생하는 비선형 마찰력을 선형모델화하는 이론을 전개한 다음 수치계산 및 실험값을 통하여 본 수치모델의 적용성에 관하여 논의한 결과 양호한 일치성을 보였다. 또한, 파랑제어 효과 및 부유체의 동요저감 효과를 동시에 만족할 수 있는 초기반력에 관하여 논의하였다.

  • PDF

파랑에 의한 항만 내 부유체의 운동 (Wave-Induced Motions of a Floating Body in a Harbour)

  • 이호영;곽영기;박종환
    • 한국해양공학회지
    • /
    • 제20권2호
    • /
    • pp.36-40
    • /
    • 2006
  • As large waves enter a harbor, during their propagation, the motions a floating body are large and if may even be damaged by waves. This phenomenon may be caused by harbor resonance, resulting from large motion at low wave frequency, which is close to the natural frequency of a vessel. In order to calculate the motion of a floating body in a harbor, it is necessary to use the wave forces containing the body-harbor interference. The simulation program to predict the motions of a floating body by waves in a harbor is developed, and this program is based on the method of velocity potential contiuation method proposed by Ijima and Yoshida The calculated results are shown by the variation of wave frequency, wave angle, and the position of a floating body.