• Title/Summary/Keyword: Flip-Flops

Search Result 101, Processing Time 0.031 seconds

Test Point Insertion with Control Point by Greater Use of Existing Functional Flip-Flops

  • Yang, Joon-Sung;Touba, Nur A.
    • ETRI Journal
    • /
    • v.36 no.6
    • /
    • pp.942-952
    • /
    • 2014
  • This paper presents a novel test point insertion (TPI) method for a pseudo-random built-in self-test (BIST) to reduce the area overhead. Recently, a new TPI method for BISTs was proposed that tries to use functional flip-flops to drive control test points instead of adding extra dedicated flip-flops for driving control points. The replacement rule used in a previous work has limitations preventing some dedicated flip-flops from being replaced by functional flip-flops. This paper proposes a logic cone analysis-based TPI approach to overcome the limitations. Logic cone analysis is performed to find candidate functional flop-flops for replacing dedicated flip-flops. Experimental results indicate that the proposed method reduces the test point area overhead significantly with minimal loss of testability by replacing the dedicated flip-flops.

The Influence of Flip-flops Gait on the Muscle Activity of Tibilalis anterior and Gastrocnemius

  • Choi, Jung Hyun;Song, Mi Ri;Lee, Joong Hyun;Kim, Hong Rae;Park, Si Eun;Kim, Ji Sung;Kwak, Dae Young;Lee, Sang Bin;Kim, Nyeon Jun;Koo, Ja Pung;Kim, Soon Hee
    • Journal of International Academy of Physical Therapy Research
    • /
    • v.4 no.2
    • /
    • pp.562-565
    • /
    • 2013
  • The fact that flip-flops, one of many different types of unstable shoes, are light and relatively easy to put on, accounts for their popularity among people. But because flip-flops rely heavily on the support of a single thong between your first and second toes, they impose a huge amount of pressure onto lower leg. Thus in the following experiment we tried to examine the different effects of flip-flops and running shoes in terms of their effect on muscle activity and fatigue of tibialis anterior and gastrocnemius during walking. In order to measure an electromyogram we used Free EMG system. 10 men and 10 women in running shoes ran on treadmills for 15 minutes at 4.8km/h, 2 days later the same experiment was carried out, but this time, in flip-flops. p value turned out to be greater than .05 and thus there was no considerable difference between the effects of flip-flops and running shoes on muscle activity and fatigue during walking. Therefore we conclude that despite the fact that flip-flops are considered unstable, their effects on muscle activity and fatigue of tibialis anterior and gastrocnemius are negligible.

Scan Selection Algorithms for No Holding Partial Scan Test Method (무고정 부분 스캔 테스트 방법을 위한 스캔 선택 알고리즘)

  • 이동호
    • Journal of the Korean Institute of Telematics and Electronics C
    • /
    • v.35C no.12
    • /
    • pp.49-58
    • /
    • 1998
  • In this paper, we report new algorithms to select scan flip-flops for the no holding partial scan test method. The no holding partial scan test method is identical to the full scan test method except that some flip-flops are left unscanned. This test method does not hold scanned or unscanned flip-flops while shifting in test vectors, or applying them, or shifting out test results. The proposed algorithm allows a large number of flip-flops to be left unscanned while maintaining almost the complete full scan fault coverage.

  • PDF

Variable Sampling Window Flip-Flops for High-Speed Low-Power VLSI (고속 저전력 VLSI를 위한 가변 샘플링 윈도우 플립-플롭의 설계)

  • Shin Sang-Dae;Kong Bai-Sun
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.42 no.8 s.338
    • /
    • pp.35-42
    • /
    • 2005
  • This paper describes novel flip-flops with improved robustness and reduced power consumption. Variable sampling window flip-flop (VSWFF) adjusts the width of the sampling window according to input data, providing robust data latching as well as shorter hold time. The flip-flop also reduces power consumption for higher input switching activities as compared to the conventional low-power flip-flop. Clock swing-reduced variable sampling window flip-flop (CSR-VSWFF) reduces clock power consumption by allowing the use of a small swing clock. Unlike conventional reduced clock swing flip-flops, it requires no additional voltage higher than the supply voltage, eliminating design overhead related to the generation and distribution of this voltage. Simulation results indicate that the proposed flip-flops provide uniform latency for narrower sampling window and improved power-delay product as compared to conventional flip-flops. To evaluate the performance of the proposed flip-flops, test structures were designed and implemented in a $0.3\mu m$ CMOS process technology. Experimental result indicates that VSWFF yields power reduction for the maximum input switching activity, and a synchronous counter designed with CSR-VSWFF improves performance in terms of power consumption with no use of extra voltage higher than the supply voltage.

A High-Speed Dual-Modulus Prescaler Using Selective Latch Technique (Selective Latch Technique을 이용한 고속의 Dual-Modulus Prescaler)

  • 김세엽;이순섭김수원
    • Proceedings of the IEEK Conference
    • /
    • 1998.10a
    • /
    • pp.779-782
    • /
    • 1998
  • This paper describes a high-speed Dual-modulus Prescaler (DMP) for RF mobile communication systems with pulse remover using selective latch technique. This circuit achieves high speed and low power consumption by reducing full speed flip-flops and using a selective latch. The proposed DMP consists of only one full speed flip-flop, a selective latch, conventional flip-flops, and a control gate. In order to ensure the timing of control signal, duty cycle problem and propagation delay must be considered. The failling edgetriggered flip-flops alleviate the duty cycle problem andthis paper shows that the propagation delay of control signal doesn't matter. The maximum operating frequency of the proposed DMP with 0.6um CMOS technology is up to 2.2㎓ at 3.3V power supply and the circuit consumes 5.24mA.

  • PDF

A study on Identifying Undetectable Faults Using Uninitializable Flip-Flops (초기화가 불가능한 풀립플롭을 이용한 시험 불가능 고장 검출에 관한 연구)

  • Lee, Jae-Hun;Jo, Jin-U
    • The Transactions of the Korea Information Processing Society
    • /
    • v.4 no.5
    • /
    • pp.1371-1379
    • /
    • 1997
  • Undetectable faults in a digital circuit are faults that no input patterms can detect.Identifying these faults in test geferation process is very time- consuming especially for sequential circuits .In this paper we present a new algorithm to identify unedtectable faults in sequential cirouits .In the alorithm. we identify uninitializable fip-flops and then, faults that prevent intialization of the fkip-flops(FPIs)are identified, finally propagation path of the FPI is checked. Time complexity of this algorithm is porportional to the product of the number of flip flops with at lest a self loop and the number of gates in the circuit. Experiments were performed on the ISCAS89 benchmark ciruits to show the feadibility of the proposed algorithm.We could identify large amount of undetectable faults(up to 50% of the number of flip-flops)in circuits with uninitializable flip-flops. Consider-ing that most of the time in test generation is cinsumed in identifying undetecatable faults, performance of test generator can be improved by using this algorithm as a pre-processing of test generation.

  • PDF

No-Holding Partial Scan Test Mmethod for Large VLSI Designs (대규모 집적회로 설계를 위한 무고정 부분 스캔 테스트 방법)

  • 노현철;이동호
    • Journal of the Korean Institute of Telematics and Electronics C
    • /
    • v.35C no.3
    • /
    • pp.1-15
    • /
    • 1998
  • In this paper, we propose a partial scan test method which can be applied to large VLSI designs. In this method, it is not necessary to hold neither scanned nor unscanned flip-flops during scan in, test application,or scan out. This test method requires almost identical design for testability modification and test wave form when compared to the full scan test method, and the method is applicable to large VLSI chips. The well known FAN algorithm has been modified to devise to sequential ATPG algorithm which is effective for the proposed test method. In addition, a partial scan algorithm which is effective for the proposed test method. In addition, a partial algorithm determined a maximal set of flip-flops which gives high fault coverage when they are unselected. The experimental resutls show that the proposed method allow as large as 20% flip-flops to remain unscanned without much decrease in the full scan fault coverage.

  • PDF

A Design on Novel Architecture Programmable Frequency divider for Integer-N Frequency Synthesizer (Integer-N 주파수 합성기를 위한 새로운 구조의 프로그램어블 주파수 분주기 설계)

  • 김태엽;경영자;이광희;손상희
    • Proceedings of the IEEK Conference
    • /
    • 1999.11a
    • /
    • pp.279-282
    • /
    • 1999
  • Frequency divider selects the channel of the frequency synthesizer. General programmable divider has many flip-flops to realize all integer division value and stability problem by using dual modules prescaler. In this paper, a new architecture of programmable divider is proposed and designed to improve these problems. The proposed programmable divider has only thirteen flip-flops. The programmable divider is designed by 0.65${\mu}{\textrm}{m}$ CMOS technology and HSPICE. Operating frequency of the programmable divider is 200MHz with a 3V supply voltage.

  • PDF

Simulation of RSFQ D/A converter to use as a voltage standard (전압표준용 RSFQ DAC의 전산모사 실험)

  • Chu, Hyung-Gon;Kang, Joon-Hee
    • 한국초전도학회:학술대회논문집
    • /
    • v.10
    • /
    • pp.160-164
    • /
    • 2000
  • Digital to analog converters based on the Josephson effect are promising for voltage standard, because they produce voltage steps with high precision and good stability. In this paper, we made a simulation study on RSFQ D/A converter. RSFQ D/A converter was composed of NDRO cells, T(toggle) flip-flops, D flip-flops, Splitters and Confluence Buffers. Confluence Buffer was used to reset the D/A converter. We also obtained operating margins of the important circuit values by simulational experiments.

  • PDF

Simulation of RSFQ D/A Converter

  • 추형곤;김규태;강준희
    • Progress in Superconductivity
    • /
    • v.3 no.2
    • /
    • pp.172-177
    • /
    • 2002
  • Superconductive digital to analog converters (DAC) based on Josephson effect produce the voltage steps with high precision and good stability Therefore, they can be applied to obtain a very accurate ac voltage standard. In this paper, we made a simulation study of Rapid Single Flux Quantum (RSFQ) DAC. RSFQ DAC was composed of Non-destructive Head Out (NDRO) cells, T flip-flops, D flip-flops, Splitters, and Confluence Buffers. Confluence Buffer was used in resetting the DACs. We also obtained operating margins of the important circuit parameters in simulations.

  • PDF