• Title/Summary/Keyword: Flight control

Search Result 1,428, Processing Time 0.024 seconds

Simulation Study on Formation Flight of Tiltrotor UAVs (틸트로터 무인기 편대비행 시뮬레이션 연구)

  • Park, Bum-Jin;Kang, Young-Shin;Cho, Am;Yoo, Chang-Sun
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.46 no.12
    • /
    • pp.1012-1020
    • /
    • 2018
  • In order to improve the capability of mission flight of tiltrotor UAV that has been developed by Korea Aerospace Research Institute, a simulation study on the formation flight of autonomous control 5 level has been performed. The formation flight is based on the centralized method with leader and follower airplanes. The formation flight controller was verified through numerical simulation with 3 followers and hardware-in-the loop simulation with 1 follower. This paper describes controller design methods, hardware-in-the-looped simulation test, and performance verification using simulation.

Trim Analysis of Coaxial Rotor-Pusher Helicopter in Level Flight (동축반전형 로터-푸셔 헬리콥터의 수평비행 트림 방안 도출 및 해석)

  • Sun-Yong Kwon;Juhyun Lee
    • Journal of Aerospace System Engineering
    • /
    • v.18 no.6
    • /
    • pp.71-77
    • /
    • 2024
  • Recent studies on future helicopter have been carried out in various means to overcome performance limitation of a conventional helicopter. Future helicopter compromises of forefront technical features incorporating a co-axial rotor, pusher propellers, and control surfaces to better provide lift and thrust, thus, allowing a future helicopter to differentiate itself from a conventional helicopter regarding to flight performance. To investigate flight characteristics of a Coaxial Rotor-Pusher Helicopter during level flight as its primary flight maneuver, aircraft modeling was performed utilizing FLIGHTLAB. The generated model was then used to examine the blade tip Mach number, lift-offset, and control surface's influence on the aircraft's flight characteristics during level flight.

A Study on Verify of UAV Flight Control Software Simulated Flight using Model-Based Development and X-Plane simulator (모델기반 개발기법과 X-plane을 이용한 무인항공기 비행제어 프로그램 모의비행 검증)

  • Han, Dong-In;Kim, Young-Sik;Lee, Chang-Yong;Lee, Dae-Woo;Cho, Kyeum-Rae
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.43 no.2
    • /
    • pp.166-171
    • /
    • 2015
  • This paper shows the design of operational flight program(OFP) using model-based design(MBD) method which is used in various engineering fields to reduce time and flight risks for development. The verification of OFP for DO-178C guidelines carry out by a model advisor function of simulink. The flight control logic on simulink is converted into C-language by auto code generation tool from, then it is implemented on 32bit digital signal processor(DSP). The verifications of flight control algorithm on various weather conditions are performed by the HILS system with Flight simulator program, X-plane.

Improvement of Unexpected Pitch Down Tendency of an Aircraft (항공기 기수 숙임 현상 개선)

  • Kim, Chong-Sup;Kwon, Hui-Man;Koh, Gi-Ok;Han, Kwang-Ho;Lee, Seung-Deok;Hwang, Byung-Moon;Kim, Seong-Jun
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.39 no.2
    • /
    • pp.162-169
    • /
    • 2011
  • The flight control system utilize RSS(Relaxed Static Stability) criteria in both longitudinal axes to achieve performance enhancements and improve stability. The aircraft using digital flight-by-wire flight control system receives aircraft flight conditions such as pitch, roll and yaw rate, normal acceleration from RSA(Rate Sensor Assembly) and ASA(Acceleration Sensor Assembly). These sensors has permissible measurement error related to system safety of an aircraft but, unexpected flight motions are happened by sensing errors such as offset, noise and etc. The unexpected pitch down tendency occurred by ASA sensor bias in 1g level flight with pilot hands-off. This paper addresses the design and verification of flight control law to improve of pitch down or up tendency caused by ASA sensor bias. The result of analysis and flight test reveals that pitch down tendency can be improved by pitch attitude feedback system.

Trajectory and Attitude Analysis for the 1st Flight Test of KSLV-I Launch Vehicle (나로호 발사체 1차 비행시험에서의 궤적 및 자세 분석)

  • Roh, Woong-Rae;Cho, Sang-Bum;Ko, Jeong-Hwan;Sun, Byung-Chan;Kim, Jeong-Yong;Park, Jeong-Joo;Cho, Gwang-Rae
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.38 no.3
    • /
    • pp.213-220
    • /
    • 2010
  • This paper presents the analysis results of trajectory, performance and attitude control based on the first flight data of the KSLV-I. The KSLV-I had a fairing separation problem and failed to inject spacecraft into the orbit. In this paper, the trajectory, flight performance, and attitude control was analyzed considering the influence of unseparated fairing. Moreover, the flight results and performance of the inertial navigation and guidance system were presented. As a results of post-flight analysis, any other problem besides the fairing separation problem was not happened and onboard equipment functioned normally.

Algorithm of Flying Control System for Level Flight using Min-Design Method on UAV (민(MIN) 설계 방법을 이용한 무인기 수평이동제어 알고리즘에 관한 연구)

  • Wang, Hyun-Min;Huh, Kyung-Moo;Woo, Kwang-Joon
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.46 no.3
    • /
    • pp.59-65
    • /
    • 2009
  • Recently, UAV(unmanned aerial vehicle) has evolved into various figure and become miniaturized. On using existing design method, it is hard to make modelling and standardizing design of flight control system of the figure including cylinder like pipe. These problems are caused by uncorrect express of nonlinearity in controller design. Therefore, it is developed through step of correct modelling and simulation on real time sing high efficiency computer in aircraft development of various figure. This is reducing period and expense of aircraft development. For the shake of solving these problems, in-design method has been devised by H.M. Wang. In this paper, an object of control is cylindrical UAV instead of the general figure of aircraft. It was analyzed flight condition, specification about level flight of the UAV and was presented algorithm to find control value.

Development of FCC Redundancy System for Tiltrotor UAV (틸트로터 무인기 비행제어컴퓨터 이중화 시스템 개발)

  • Park, Bum-Jin;Kang, Young-Shin;Yoo, Chang-Sun;Cho, Am
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.45 no.2
    • /
    • pp.133-139
    • /
    • 2017
  • Flight control computer of tiltrotor UAV was designed by redundancy system with primary and secondary channels to improve reliability. The redundancy functions consist of channel switching and data recovery. The channel switching function consists of software method by using cross channel data link and hardware method by using watchdog timer. The data recovery is the function to maintain flight condition when the flight control computer is restarted exceptionally in operation. The redundancy system was verified by flight control computer bench test, system integration test and HILS test. This paper describes the redundancy function of tiltrotor UAV flight control computer and test-verification method.

A Study on Fault Tolerance System for Flight Control Computer and Memory of Small Drones (소형 드론용 비행 제어기 및 메모리를 위한 고장 감내 시스템 연구)

  • Lee, Jeongdu;Cho, Doosan
    • The Journal of the Convergence on Culture Technology
    • /
    • v.6 no.1
    • /
    • pp.425-431
    • /
    • 2020
  • The market for small unmanned aerial vehicles (SUAVs) is growing rapidly as technology advances and makes it possible to use them in various fields. However, due to the rapid increase in small drones, breakdowns, collisions and falls are also increasing year by year, and technologies for reducing accident and securing safety are being actively researched. In particular, the application of a fault tolerance system to cope with unexpected failures during flight is essential. According to data released by the US Department of Defense, accidents caused by errors in flight control computers account for about 28% of all accidents. This paper describes the proposal of flight control computer system's dual structure design to tolerate flight control system failure.

Fault Tolerant Control Design Using IMM Filter with an Application to a Flight Control System (IMM 필터를 이용한 고장허용 제어기법 및 비행 제어시스템에의 응용)

  • 김주호;황태현;최재원
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.87-87
    • /
    • 2000
  • In this paper, an integrated design of fault detection, diagnosis and reconfigurable control tot multi-input and multi-output system is proposed. It is based on the interacting multiple model estimation algorithm, which is one of the most cost-effective adaptive estimation techniques for systems involving structural and/or parametric changes. This research focuses on the method to recover the performance of a system with failed actuators by switching plant models and controllers appropriately. The proposed scheme is applied to a fault tolerant control design for flight control system.

  • PDF

Gain Scheduled Fuzzy Control on Aircraft Flight Control (게인 스케줄링 퍼지제어의 비행제어에 대한 적용)

  • 홍성경;심규홍;박성수
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.10 no.2
    • /
    • pp.125-130
    • /
    • 2004
  • This paper describes an approach for synthesizing a Fuzzy Logic Controller(FLC) that combines the benefits of fuzzy logic control and fuzzy logic gain scheduling for the F/A-18 aircraft. Specially, fuzzy rules are utilized on-line to determine the denoralization factor(Κ) of a feedback fuzzy controller based on the dynamic pressure(Q) indicateing the region of the flight envelop the aircraft is operating in. Simulation results demonstrate that the proposed FLC provides excellent compensation for time-varying and/or nonlinear characteristics of the aircraft, and that it also exhibits satisfactory robustness with noisy air data sensors.